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Representation?

representation theory representationism representation learning
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Graph: A Flexible Data Representation
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Non-Scalar Edge Weights

dcP (Si , Sj) = inf
C∈A(Si ,Sj)

inf
R∈E(3)

(∫
Si

‖R (x)− C (x) ‖2 dvolSi (x)

) 1
2

dij
−−−→

fij
Si Sj
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Do Graph Representations Have Enough Expressive Power?
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Cryo-Electron Microscopy

• Singer et al. “Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors”, SIAM
Journal on Imaging Sciences, 4 (2), pp. 543–572 (2011).

5/33



Cryo-Electron Microscopy: Real Challenge is Low SNR

Apply Class Averaging to improve SNR!

I For each image, identify nearest neighbors in terms of
similar viewing directions

I Average out the image with the identified neighbor
images (with respect to the correct pairwise rotations)

• Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II – The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589–616 (2011).
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Class Averaging

I Compute the rotation-invariant distance between all pairs of
images dRID (Ii , Ij) := minα∈[0,2π] ‖Ii − eιαIj‖F, and denote αij

for the optimal alignment angle

I Fix threshold ε > 0 and define Hermitian W ∈ Cn×n by

Wij :=

{
exp (ιαij) if dRID (Ii , Ij) < ε

0 otherwise

I Solve for the top 3 eigenvectors ψ1, ψ2, ψ3 of W , which
embeds I1, I2, . . . into C3 by

Ii 7−→ Ψ (Ii ) :=
(ψ1 (i) , ψ2 (i) , ψ3 (i))

‖(ψ1 (i) , ψ2 (i) , ψ3 (i))‖

I Use correlation in the embedded C3 space to determine the
closeness between viewing directions
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Phase Synchronization (Singer’11)

I Problem: Recover rotation
angles θ1, . . . , θn ∈ [0, 2π]
from noisy measurements
of their pairwise offsets

θij ≡ θi − θj + noise

for some or all pairs of (i , j)

I Examples: Class averaging
in cryo-EM image analysis,
shape registration and
community detection
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Phase Synchronization (Singer’11)

I Setup: Phase vector z =
(
eιθ1 , . . . , eιθn

)> ∈ Cn
1, noisy

pairwise measurements in n-by-n Hermitian matrix

Hij =

{
eι(θi−θj) = zi z̄j with prob. r ∈ [0, 1]

Uniform (U(1)) with prob. 1− r

and Hij = Hji . This is known as a random corruption model.

I Goal: Recover the true phase vector z (up to a global
multiplicative factor)

I Spectral Relaxation: solve for the top eigenvector of H,
denoted as x̃ (scaled to ‖x̃‖2 =

√
n), then define x̂ ∈ Cn

1 by

x̂i := x̃i/ |x̃i |
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Phase Synchronization: Existing Methods

I Convex Relaxations: Singer’11, Chaudhury et al.’15, Bandeira
et al.’16, Bandeira et al.’17

I Nonconvex Methods: Boumal’16, Zhong & Boumal’17

I Non-Unique Games: Bandeira et al.’15

I Approximate Message Passing: Perry et al.’18

• Singer, A. Angular synchronization by eigenvectors and semidefinite programming. Applied and Computational
Harmonic Analysis, 30(1), 20–36 (2011).
• Chaudhury, K.N., Khoo, Y., Singer, A. Global registration of multiple point clouds using semidefinite
programming. SIAM Journal on Optimization, 25(1), 468–501 (2015)
• Bandeira, A.S., Kennedy, C., Singer, A. Approximating the little Grothendieck problem over the orthogonal and
unitary groups. Mathematical Programming, 160(1-2) pp. 433–475 (2016).
• Bandeira, A.S., Boumal, N., Singer, A. Tightness of the maximum likelihood semidenite relaxation for angular
synchronization. Mathematical Programming, 163(1-2) pp. 145–167 (2017).
• Boumal, N. Nonconvex phase synchronization. SIAM Journal on Optimization, 26(4):2355–2377, 2016.
• Zhong, Y., Boumal, N. Near-optimal bounds for phase synchronization. SIAM Journal on Optimization,
28(2):989-1016, 2018
• Bandeira, A., Chen, Y., Singer, A. Non-unique games over compact groups and orientation estimation in
cryo-EM. arXiv preprint arXiv:1505.03840, 2015.
• Perry, A., Wein, A. S., Bandeira, A. S., Moitra, A. Message-passing algorithms for synchronization problems over
compact groups. Communications on Pure and Applied Mathematics, 2018.
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Initialization: Inspired by Harmonic Retrieval
I Fix kmax ≥ 1, build H(2), . . . ,H(kmax) out of H = H(1) by

taking entrywise powers of H

I For each k = 1, . . . , kmax, find a reasonably good symmetric
rank-1 approximation

W (k) := arg max
Y=Y>

rank(Y )=1

∥∥∥H(k) − Y
∥∥∥2

F

using e.g. spectral method
I For all 1 ≤ i , j ≤ n, find the “peak location” of the

spectrogram

θ̂ij := arg max
φ∈[0,2π]

∣∣∣∣∣∣12
kmax∑

k=−kmax

W
(k)
ij e−ιkφ

∣∣∣∣∣∣
I Apply the spectral method yet again to the Hermitian matrix

Ĥ to get x̂ ∈ Cn
1, where Ĥij = eιθ̂ij
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1, where Ĥij = eιθ̂ij

11/33



Initialization: Inspired by Harmonic Retrieval
I Fix kmax ≥ 1, build H(2), . . . ,H(kmax) out of H = H(1) by

taking entrywise powers of H
I For each k = 1, . . . , kmax, find a reasonably good symmetric

rank-1 approximation

W (k) := arg max
Y=Y>

rank(Y )=1

∥∥∥H(k) − Y
∥∥∥2

F

using e.g. spectral method
I For all 1 ≤ i , j ≤ n, find the “peak location” of the

spectrogram

θ̂ij := arg max
φ∈[0,2π]

∣∣∣∣∣∣12
kmax∑

k=−kmax

W
(k)
ij e−ιkφ

∣∣∣∣∣∣
I Apply the spectral method yet again to the Hermitian matrix
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How well does it work? Evaluate correlation |Corr (x̂ , z)|

Random Corruption Model, r = λ/
√
n

Our Method: |Corr (x̂, z)| −→ 1

as kmax � 1, even for λ < 1!

Previous Art: Only ensures

|Corr (x̂, z)| > 1√
n

for λ > 1

12/33
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New Theory: Strong Recovery

Theorem (G.–Zhao 2019). Under (mild) assumptions, with high
probability, the multi-frequency phase synchronization algorithm
produces an estimate x̂ satisfying

|Corr (x̂ , z)| ≥ 1− C ′

k2
max

provided that

kmax > max

{
5,

1√
2π − 2− 4

√
2πC2σ

√
log n/n

}
.

In particular, |Corr (x̂ , z)| → 1 as kmax →∞.

13/33



Why does it work?

I By a perturbation analysis, after solving each subproblem

W (k) := arg max
Y=Y>

rank(Y )=1

∥∥∥H(k) − Y
∥∥∥2

F

we expect W (k) = zk(zk)∗ + E (k) ≈ zk(zk)∗, where zi = eιθi

I The peak finding step is expected to ensure

θ̂ij = arg max
φ∈[0,2π]

∣∣∣∣∣12
kmax∑
k=1

W
(k)
ij e−ιkφ

∣∣∣∣∣
≈ arg max

φ∈[0,2π]

∣∣∣∣∣12
kmax∑
k=1

eιk(θi−θj)e−ιkφ

∣∣∣∣∣ = θi − θj

provided that E (k) does not “perturb away” the maximum!
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Landscape Analysis of the Dirichlet Kernel

kmax∑
k=−kmax

W
(k)
ij e−ιkφ

=
kmax∑

k=−kmax

eιk(θi−θj)e−ιkφ +
kmax∑

k=−kmax

E
(k)
ij e−ιkφ

=

sin

[(
kmax +

1

2

)
(θi − θj − φ)

]
sin

[
1

2
(θi − θj − φ)

] +
kmax∑

k=−kmax

E
(k)
ij e−ιkφ

=: Dirkmax (φ− (θi − θj)) + Rkmax (φ)
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A Proof by Picture (Notation: ∆θij := θ̂ij − (θi − θj))

Key Observation: |∆θij | ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

0

2

4

6

8

10

12
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A Proof by Picture (Notation: ∆θij := θ̂ij − (θi − θj))

Key Observation: |∆θij | ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

⇐ 2kmax − ‖Rkmax‖∞ >
1

sin
(

π
2kmax+1

) + ‖Rkmax‖∞

⇐ 1− 1

2kmax sin
(

π
2kmax+1

) > 1

kmax
‖Rkmax‖∞ ∼

∥∥∥E (k)
ij

∥∥∥
∞

What are the odds?
Can be estimated with a uniform upper bound for the E

(k)
ij ’s!

17/33



A Proof by Picture (Notation: ∆θij := θ̂ij − (θi − θj))

Key Observation: |∆θij | ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

⇐ 2kmax − ‖Rkmax‖∞ >
1

sin
(

π
2kmax+1

) + ‖Rkmax‖∞

⇐ 1− 1

2kmax sin
(

π
2kmax+1

) > 1

kmax
‖Rkmax‖∞ ∼

∥∥∥E (k)
ij

∥∥∥
∞

What are the odds?
Can be estimated with a uniform upper bound for the E

(k)
ij ’s!

17/33



A Proof by Picture (Notation: ∆θij := θ̂ij − (θi − θj))

Key Observation: |∆θij | ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

⇐ 2kmax − ‖Rkmax‖∞ >
1

sin
(

π
2kmax+1

) + ‖Rkmax‖∞

⇐ 1− 1

2kmax sin
(

π
2kmax+1

) > 1

kmax
‖Rkmax‖∞ ∼

∥∥∥E (k)
ij

∥∥∥
∞

What are the odds?
Can be estimated with a uniform upper bound for the E

(k)
ij ’s!

17/33



Eigenvector perturbation analysis in `∞-norm!

I Standard perturbation bounds use `2-norm (e.g.
Davis–Kahan), but most application scenarios of spectral
methods require bounding the `∞-norm

I Active research area in recent years, e.g. [Eldridge et al.
(2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)];
[Zhong & Boumal (2018)]

I Sharpest results to date use a “leave-one-out” trick
popularized by statisticians

Lemma (G.–Zhao 2019). For any 0 < ε ≤ 2, with probability at
least 1− O

(
n−(2+ε)

)
, there exists absolute constant C2 > 0 s.t.

∥∥∥E (k)
ij

∥∥∥
∞
≤ C2σ

√
log n

n
.
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Putting Everything Together, with a Union Bound

With high probability, uniformly for all i , j ∈ [n], θ̂ij is close to the
true offset θi − θj as long as

1− 1

2kmax sin
(

π
2kmax+1

) ≥ ∥∥∥E (k)
ij

∥∥∥
∞

⇐ 1− 1

2kmax sin
(

π
2kmax+1

) > C2σ

√
log n

n

⇐ kmax > max

{
5,

1√
2π − 2− 4

√
2πC2σ

√
log n/n

}
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New Theory: Strong Recovery

Theorem (G.–Zhao 2019). Under (mild) assumptions, with high
probability, the multi-frequency phase synchronization algorithm
produces an estimate x̂ satisfying

|Corr (x̂ , z)| ≥ 1− C ′

k2
max

provided that

kmax > max

{
5,

1√
2π − 2− 4

√
2πC2σ

√
log n/n

}
.

In particular, |Corr (x̂ , z)| → 1 as kmax →∞.
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Detour: Multi-Frequency Synchronization over SO(3)

Peter–Weyl: f (g) =
∞∑
k=0

dkTr
[
f̂ (k) ρk (g)

]
, ∀f ∈ L2 (SO(3))

I Random corruption model:

gij =

{
gig
−1
j with probability r

Unif (SO(3)) with probability 1− r

I Use spectral methods to estimate ρ1 (gij) , . . . , ρkmax (gij),

denote Ĥ
(k)
ij for the estimator of ρk (gij)

I Solve a generalized harmonic retrieval problem on SO(3):

ĝij = arg max
g∈SO(3)

kmax∑
k=1

dkTr
[
Ĥ

(k)
ij ρ∗k (g)

]
I Works fantastic in practice, but no theory yet!
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Class Averaging

I Compute the rotation-invariant distance between all pairs of
images dRID (Ii , Ij) := minα∈[0,2π] ‖Ii − eιαIj‖F, and denote αij

for the optimal alignment angle

I Fix threshold ε > 0 and define Hermitian W ∈ Cn×n by

Wij :=

{
exp (ιαij) if dRID (Ii , Ij) < ε

0 otherwise

I Solve for the top 3 eigenvectors ψ1, ψ2, ψ3 of W , which
embeds I1, I2, . . . into C3 by

Ii 7−→ Ψ (Ii ) :=
(ψ1 (i) , ψ2 (i) , ψ3 (i))

‖(ψ1 (i) , ψ2 (i) , ψ3 (i))‖

I Use correlation in the embedded C3 space to determine the
closeness between viewing directions
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Multi-Frequency Class Averaging

I Compute the rotation-invariant distance between all pairs of
images dRID (Ii , Ij) := minα∈[0,2π] ‖Ii − eιαIj‖F, and denote αij

for the optimal alignment angle

I Fix threshold ε > 0 and define Hermitian W ∈ Cn×n by

W
(k)
ij :=

{
exp (ιkαij) if dRID (Ii , Ij) < ε

0 otherwise

I Solve for the top 2k + 1 eigenvectors ψ
(k)
1 , · · · , ψ(k)

2k+1 of

W (k), which embeds I1, I2, . . . into C2k+1 by

Ii 7−→ Ψ(k) (Ii ) :=
(ψ1 (i) , . . . , ψ2k+1 (i))

‖(ψ1 (i) , . . . , ψ2k+1 (i))‖

I Use all correlations in the embedded C2k+1 (k = 1, . . . , kmax)
spaces to determine the closeness between viewing directions
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Why 2k + 1? Some Representation Theoretic Patterns

I (G.–Fan–Zhao 2019) The extrinsic model S2 of viewing
directions and the intrinsic model of the top eigenspace of
W (k) are isomorphic, following (Hadani & Singer, 2011)

I For sufficiently large sample size n and appropriately small
ε > 0, the top eigenspace of W (k) is (2k + 1)-dimensional,
and the spectral gap grows linearly in k:

λ
(k)
k − λ

(k)
k+1 ∼

1 + k

4
ε2

I Larger k ⇒ larger spectral gap ⇒ better numerical stability!

• Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II – The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589–616 (2011).
• Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.

24/33



Multi-Frequency Information Improves Class Averaging

Histograms of true viewing angles between each image and its 50
nearest neighboring images

25/33



Outline

Motivation

I Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

I A Multi-Frequency Formulation

I A Proof by Picture

Multi-Frequency Class Averaging

I Some Representation Theoretic Patterns

From a Fibre Bundle Point of View



Synchronization Problems: Geometric Picture

I Data:
I graph Γ = (V ,E )
I topological group G , equipped with a norm ‖·‖, and a

G -module F
I edge potential g : E → G satisfying gij = g−1

ji , ∀ (i , j) ∈ E

I Flat Principal G -Bundle:
I Let U = {Ui | 1 ≤ i ≤ |V |} be an open cover of Γ (viewed as a

1-dimensional simplicial complex), where Ui is the (open) star
neighborhood of vertex i .

I Triplet (g ,G , Γ) defines a flat principal G -bundle Bρ over Γ
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Synchronization Problems: Geometric Picture

I Data:
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Theorem (Steenrod 1951, §2).
If Lie group G acts on Y ,
U = {Ui} is an open cover of X ,
{gij ∈ G | Ui ∩ Uj 6= ∅} satisfies

gii = e ∈ G for all Ui

gij = g−1
ji if Ui ∩ Uj 6= ∅

gijgjk = gik if Ui ∩ Uj ∩ Uk 6= ∅

then there exists a fibre bundle
B with base space X , fibre Y ,
group G , and bundle
transformations {gij}.
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No triple intersections!
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Theorem (Steenrod 1951, §2).
If Lie group G acts on Y ,
U = {Ui} is an open cover of X ,
{gij ∈ G | Ui ∩ Uj 6= ∅} satisfies

gii = e ∈ G for all Ui

gij = g−1
ji if Ui ∩ Uj 6= ∅

gijgjk = gik if Ui ∩ Uj ∩ Uk 6= ∅

then there exists a fibre bundle
B with base space X , fibre Y ,
group G , and bundle
transformations {gij}.
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Representation and Associated Bundles

I If M is a principal G -bundle over B, ρ : G → Aut (F ) is a
representation of G over a vector space F . Then ρ induces an
associated F -bundle over B:

M ×ρ F := M × F
/
∼

where the equivalence relation is defined by

(m · g , v) ∼ (m, ρ (g) v)

I Non-equivalent irreducible representations gives rise to distinct
associated bundles
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Multi-Frequency ↔ Multiple Associated Bundles

I All irreducible representations of U(1):
{
θ → eιkθ | k ∈ Z

}
I Entrywise power: Inducing multiple irreducible

representations, effectively creating many associated bundles

I Multi-frequency phase synchronization and class averaging
both strive to distill features across multiple associate bundles
(associated with the same principal bundles)
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Diffusion and Community Detection on Fibre Bundles

• Tingran Gao. The Diffusion Geometry of Fibre Bundles: Horizontal Diffusion Maps. Applied and Computational
Harmonic Analysis, online first, pp.1–69 (2019)
• Tingran Gao, Jacek Brodzki, and Sayan Mukherjee. The Geometry of Synchronization Problems and Learning
Group Actions, Discrete & Computational Geometry, online first, pp.1–62 (2019)
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Open Problems

I Extension to other synchronization and multireference
alignment problems over compact/noncompact Lie groups?

I Fundamental statistical/computational limits in
synchronizability-based community detection?

I A learning paradigm on sheaves?
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Thank You!

I AMS–Simons Travel Grant

I UChicago CDAC Data Science Discovery Seed Grant

I NSF CDS&E-MSS DMS-1854831

• Tingran Gao and Zhizhen Zhao. Multi-Frequency Phase Synchronization. Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), PMLR 97:2132–2141, 2019.
• Tingran Gao, Yifeng Fan, and Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class
Averaging for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
• Tingran Gao. The Diffusion Geometry of Fibre Bundles: Horizontal Diffusion Maps. Applied and Computational
Harmonic Analysis, online first, pp.1–69 (2019)
• Tingran Gao, Jacek Brodzki, and Sayan Mukherjee. The Geometry of Synchronization Problems and Learning
Group Actions, Discrete & Computational Geometry, online first, pp.1–62 (2019)
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