Multi-Representation Manifold Learning on Fibre Bundles

Tingran Gao

Committee on Computational and Applied Mathematics Department of Statistics University of Chicago

Computational Harmonic Analysis and Data Science Casa Matemática Oaxaca Oaxaca, Mexico

October 28, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □

Outline

Motivation

Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Representation?

representation theory

representationism

representation learning

Graph: A Flexible Data Representation

Two-dimensional Isomap embedding (with neighborhood graph).

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Non-Scalar Edge Weights

$$d_{\mathrm{cP}}\left(S_{i},S_{j}\right) = \inf_{\mathcal{C}\in\mathcal{A}\left(S_{i},S_{j}\right)} \inf_{R\in\mathbb{E}(3)} \left(\int_{S_{i}} \|R\left(x\right)-\mathcal{C}\left(x\right)\|^{2} d\mathrm{vol}_{S_{i}}\left(x\right)\right)^{\frac{1}{2}}$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ → 의 < (*)
 3/33

Do Graph Representations Have Enough Expressive Power?

イロト イヨト イヨト イヨト

4/33

Outline

Motivation

Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

Some Representation Theoretic Patterns

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

From a Fibre Bundle Point of View

Cryo-Electron Microscopy

• Singer et al. "Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors", SIAM Journal on Imaging Sciences, 4 (2), pp. 543–572 (2011).

Cryo-Electron Microscopy: Real Challenge is Low SNR

Fig. 3 The left most image is a clean simulated projection image of the E.coli 50S ribosomal subunit. The other three images are real electron microscope images of the same subunit

Apply Class Averaging to improve SNR!

- For each image, identify nearest neighbors in terms of similar viewing directions
- Average out the image with the identified neighbor images (with respect to the correct pairwise rotations)

[•] Hadani & Singer. "Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II – The Class Averaging Problem," Foundations of Computational Mathematics, 11 (5), pp. 589–616 (2011).

Compute the rotation-invariant distance between all pairs of images d_{RID} (I_i, I_j) := min_{α∈[0,2π]} ||I_i − e^{ια}I_j||_F, and denote α_{ij} for the optimal alignment angle

Compute the rotation-invariant distance between all pairs of images d_{RID} (I_i, I_j) := min_{α∈[0,2π]} ||I_i − e^{ια}I_j||_F, and denote α_{ij} for the optimal alignment angle

Fix threshold $\epsilon > 0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$W_{ij} := \begin{cases} \exp(\iota \alpha_{ij}) & \text{if } d_{\text{RID}}(I_i, I_j) < \epsilon \\ 0 & \text{otherwise} \end{cases}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Compute the rotation-invariant distance between all pairs of images d_{RID} (I_i, I_j) := min_{α∈[0,2π]} ||I_i − e^{ια}I_j||_F, and denote α_{ij} for the optimal alignment angle

Fix threshold $\epsilon > 0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$W_{ij} := \begin{cases} \exp(\iota \alpha_{ij}) & \text{if } d_{\text{RID}}(I_i, I_j) < \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Solve for the top 3 eigenvectors ψ₁, ψ₂, ψ₃ of W, which embeds I₁, I₂, ... into C³ by

$$I_{i} \longmapsto \Psi(I_{i}) := \frac{(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i))}{\|(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i))\|}$$

・ロト < 母 ト < 臣 ト < 臣 ト 三 の < で 7/33</p>

Compute the rotation-invariant distance between all pairs of images d_{RID} (I_i, I_j) := min_{α∈[0,2π]} ||I_i − e^{ια}I_j||_F, and denote α_{ij} for the optimal alignment angle

Fix threshold $\epsilon > 0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$W_{ij} := \begin{cases} \exp(\iota \alpha_{ij}) & \text{if } d_{\text{RID}}(I_i, I_j) < \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Solve for the top 3 eigenvectors ψ₁, ψ₂, ψ₃ of W, which embeds I₁, I₂, ... into C³ by

$$I_{i} \longmapsto \Psi(I_{i}) := \frac{\left(\psi_{1}\left(i\right), \psi_{2}\left(i\right), \psi_{3}\left(i\right)\right)}{\left\|\left(\psi_{1}\left(i\right), \psi_{2}\left(i\right), \psi_{3}\left(i\right)\right)\right\|}$$

► Use correlation in the embedded C³ space to determine the closeness between viewing directions

Phase Synchronization (Singer'11)

▶ **Problem:** Recover rotation angles $\theta_1, \ldots, \theta_n \in [0, 2\pi]$ from noisy measurements of their pairwise offsets

 $\theta_{ij} \equiv \theta_i - \theta_j + \text{noise}$

for some or all pairs of (i, j)

 Examples: Class averaging in cryo-EM image analysis, shape registration and community detection

Phase Synchronization (Singer'11)

Setup: Phase vector z = (e^{ιθ1},..., e^{ιθn})^T ∈ Cⁿ₁, noisy pairwise measurements in *n*-by-*n* Hermitian matrix

$$H_{ij} = egin{cases} e^{\iotaig(heta_i- heta_jig)} = z_iar z_j & ext{with prob. } r\in[0,1] \ ext{Uniform}\left(ext{U}(1)
ight) & ext{with prob. } 1-r \end{cases}$$

and $H_{ij} = \overline{H_{ji}}$. This is known as a random corruption model.

- Goal: Recover the true phase vector z (up to a global multiplicative factor)
- Spectral Relaxation: solve for the top eigenvector of H, denoted as x̃ (scaled to ||x̃||₂ = √n), then define x̂ ∈ C₁ⁿ by

$$\hat{x}_i := \tilde{x}_i / |\tilde{x}_i|$$

Phase Synchronization: Existing Methods

- Convex Relaxations: Singer'11, Chaudhury et al.'15, Bandeira et al.'16, Bandeira et al.'17
- ▶ Nonconvex Methods: Boumal'16, Zhong & Boumal'17
- Non-Unique Games: Bandeira et al.'15
- Approximate Message Passing: Perry et al.'18

• Singer, A. Angular synchronization by eigenvectors and semidefinite programming. Applied and Computational Harmonic Analysis, 30(1), 20–36 (2011).

• Chaudhury, K.N., Khoo, Y., Singer, A. Global registration of multiple point clouds using semidefinite programming. *SIAM Journal on Optimization*, 25(1), 468–501 (2015)

• Bandeira, A.S., Kennedy, C., Singer, A. Approximating the little Grothendieck problem over the orthogonal and unitary groups. *Mathematical Programming*, 160(1-2) pp. 433–475 (2016).

 Bandeira, A.S., Boumal, N., Singer, A. Tightness of the maximum likelihood semidenite relaxation for angular synchronization. *Mathematical Programming*, 163(1-2) pp. 145–167 (2017).

• Boumal, N. Nonconvex phase synchronization. SIAM Journal on Optimization, 26(4):2355-2377, 2016.

 Zhong, Y., Boumal, N. Near-optimal bounds for phase synchronization. SIAM Journal on Optimization, 28(2):989-1016, 2018

• Bandeira, A., Chen, Y., Singer, A. Non-unique games over compact groups and orientation estimation in cryo-EM. arXiv preprint arXiv:1505.03840, 2015.

• Perry, A., Wein, A. S., Bandeira, A. S., Moitra, A. Message-passing algorithms for synchronization problems over compact groups. *Communications on Pure and Applied Mathematics*, 2018.

Outline

Motivation

Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

Some Representation Theoretic Patterns

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

From a Fibre Bundle Point of View

Fix k_{max} ≥ 1, build H⁽²⁾,..., H^(k_{max}) out of H = H⁽¹⁾ by taking entrywise powers of H

- Fix k_{max} ≥ 1, build H⁽²⁾,..., H^(k_{max}) out of H = H⁽¹⁾ by taking entrywise powers of H
- ► For each k = 1,..., k_{max}, find a reasonably good symmetric rank-1 approximation

$$W^{(k)} := \underset{\substack{Y=Y^{\top}\\ \operatorname{rank}(Y)=1}}{\operatorname{arg\,max}} \left\| H^{(k)} - Y \right\|_{F}^{2}$$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

11/33

using e.g. spectral method

- Fix k_{max} ≥ 1, build H⁽²⁾,..., H^(k_{max}) out of H = H⁽¹⁾ by taking entrywise powers of H
- ▶ For each k = 1,..., k_{max}, find a reasonably good symmetric rank-1 approximation

$$W^{(k)} := \underset{\substack{Y=Y^{\top}\\ \operatorname{rank}(Y)=1}}{\operatorname{arg\,max}} \left\| H^{(k)} - Y \right\|_{F}^{2}$$

using e.g. spectral method

For all 1 ≤ i, j ≤ n, find the "peak location" of the spectrogram

$$\hat{ heta}_{ij} := rgmax_{\phi \in [0,2\pi]} \left| rac{1}{2} \sum_{k=-k_{ ext{max}}}^{k_{ ext{max}}} W_{ij}^{(k)} e^{-\iota k \phi}
ight|$$

<ロ> < □ > < □ > < 三 > < 三 > < 三 > ○ < ♡ < ○ 11/33

- Fix k_{max} ≥ 1, build H⁽²⁾,..., H^(k_{max}) out of H = H⁽¹⁾ by taking entrywise powers of H
- ► For each k = 1,..., k_{max}, find a reasonably good symmetric rank-1 approximation

$$W^{(k)} := \underset{\substack{Y=Y^{\top}\\ \operatorname{rank}(Y)=1}}{\operatorname{arg\,max}} \left\| H^{(k)} - Y \right\|_{F}^{2}$$

using e.g. spectral method

For all 1 ≤ i, j ≤ n, find the "peak location" of the spectrogram

$$\hat{ heta}_{ij} := rgmax_{\phi \in [0,2\pi]} \left| rac{1}{2} \sum_{k=-k_{ ext{max}}}^{k_{ ext{max}}} W_{ij}^{(k)} e^{-\iota k \phi}
ight|$$

• Apply the spectral method yet again to the Hermitian matrix \widehat{H} to get $\widehat{x} \in \mathbb{C}_1^n$, where $\widehat{H}_{ij} = e^{\iota \widehat{\theta}_{ij}}$

How well does it work? Evaluate correlation $|Corr(\hat{x}, z)|$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < で 12/33

Outline

Motivation

Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

Some Representation Theoretic Patterns

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

From a Fibre Bundle Point of View

New Theory: Strong Recovery

Theorem (G.–Zhao 2019). Under (mild) assumptions, with high probability, the multi-frequency phase synchronization algorithm produces an estimate \hat{x} satisfying

$$|\operatorname{Corr}(\hat{x},z)| \geq 1 - rac{C'}{k_{\max}^2}$$

provided that

$$k_{\max} > \max\left\{5, \frac{1}{\sqrt{2}\pi - 2 - 4\sqrt{2}\pi C_2 \sigma \sqrt{\log n/n}}\right\}$$

In particular, $|\operatorname{Corr}(\hat{x}, z)| \to 1$ as $k_{\max} \to \infty$.

Why does it work?

By a perturbation analysis, after solving each subproblem

$$W^{(k)} := \underset{\substack{Y=Y^{\top}\\ \operatorname{rank}(Y)=1}}{\operatorname{arg\,max}} \left\| H^{(k)} - Y \right\|_{F}^{2}$$

we expect $W^{(k)} = z^k (z^k)^* + E^{(k)} \approx z^k (z^k)^*$, where $z_i = e^{\iota \theta_i}$

The peak finding step is expected to ensure

$$\hat{\theta}_{ij} = \underset{\phi \in [0, 2\pi]}{\arg \max} \left| \frac{1}{2} \sum_{k=1}^{k_{\max}} W_{ij}^{(k)} e^{-\iota k\phi} \right|$$

$$\approx \underset{\phi \in [0, 2\pi]}{\arg \max} \left| \frac{1}{2} \sum_{k=1}^{k_{\max}} e^{\iota k \left(\theta_i - \theta_j\right)} e^{-\iota k\phi} \right| = \theta_i - \theta_j$$

provided that $E^{(k)}$ does not "perturb away" the maximum!

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ < ○ 14/33</p>

Landscape Analysis of the Dirichlet Kernel

<ロト < @ ト < 臣 ト < 臣 ト 三 の < で 15/33

Landscape Analysis of the Dirichlet Kernel

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □>
 15/33

Key Observation: $|\Delta heta_{ij}| \leq heta_* < rac{4\pi}{2k_{\max}+1}$ whenever

$$2k_{\max} + 1 - ||R_{k_{\max}}||_{\infty} > \frac{1}{\sin(\theta_*/2)} + ||R_{k_{\max}}||_{\infty}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ ○ < ○ 16/33

Key Observation: $|\Delta \theta_{ij}| \le heta_* < rac{4\pi}{2k_{\max}+1}$ whenever

$$2k_{\max} + 1 - \|R_{k_{\max}}\|_{\infty} > \frac{1}{\sin(\theta_*/2)} + \|R_{k_{\max}}\|_{\infty}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

$$2k_{\max} + 1 - \frac{1}{2m + 1}$$

$$\frac{2\pi}{2m + 1}$$

$$\theta_* \quad \frac{4\pi}{2m + 1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲口▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 … 釣へで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Key Observation:
$$|\Delta \theta_{ij}| \le \theta_* < \frac{4\pi}{2k_{\max}+1}$$
 whenever
 $2k_{\max} + 1 - \|R_{k_{\max}}\|_{\infty} > \frac{1}{\sin(\theta_*/2)} + \|R_{k_{\max}}\|_{\infty}$

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ > Ξ < つ < (~ 17/33

Key Observation:
$$|\Delta \theta_{ij}| \le \theta_* < \frac{4\pi}{2k_{\max}+1}$$
 whenever
 $2k_{\max} + 1 - \|R_{k_{\max}}\|_{\infty} > \frac{1}{\sin(\theta_*/2)} + \|R_{k_{\max}}\|_{\infty}$
 $\Leftrightarrow 2k_{\max} - \|R_{k_{\max}}\|_{\infty} > \frac{1}{\sin\left(\frac{\pi}{2k_{\max}+1}\right)} + \|R_{k_{\max}}\|_{\infty}$

Key Observation:
$$|\Delta \theta_{ij}| \le \theta_* < \frac{4\pi}{2k_{\max}+1}$$
 whenever
 $2k_{\max}+1 - \|R_{k_{\max}}\|_{\infty} > \frac{1}{\sin(\theta_*/2)} + \|R_{k_{\max}}\|_{\infty}$
 $\Leftarrow 2k_{\max} - \|R_{k_{\max}}\|_{\infty} > \frac{1}{\sin\left(\frac{\pi}{2k_{\max}+1}\right)} + \|R_{k_{\max}}\|_{\infty}$
 $\Leftrightarrow 1 - \frac{1}{2k_{\max}\sin\left(\frac{\pi}{2k_{\max}+1}\right)} > \frac{1}{k_{\max}}\|R_{k_{\max}}\|_{\infty} \sim \left\|\boldsymbol{E}_{ij}^{(k)}\right\|_{\infty}$

What are the odds? Can be estimated with a uniform upper bound for the $E_{ii}^{(k)}$,s!

Eigenvector perturbation analysis in ℓ_{∞} -norm!

- Standard perturbation bounds use ℓ₂-norm (e.g. Davis–Kahan), but most application scenarios of spectral methods require bounding the ℓ_∞-norm
- Active research area in recent years, e.g. [Eldridge et al. (2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)]; [Zhong & Boumal (2018)]
- Sharpest results to date use a "leave-one-out" trick popularized by statisticians

Lemma (G.–Zhao 2019). For any $0 < \epsilon \le 2$, with probability at least $1 - O(n^{-(2+\epsilon)})$, there exists absolute constant $C_2 > 0$ s.t.

$$\left\|\boldsymbol{E}_{ij}^{(\boldsymbol{k})}\right\|_{\infty} \leq C_2 \sigma \sqrt{\frac{\log n}{n}}.$$

Putting Everything Together, with a Union Bound

With high probability, uniformly for all $i, j \in [n]$, $\hat{\theta}_{ij}$ is close to the true offset $\theta_i - \theta_j$ as long as

$$1 - \frac{1}{2k_{\max}\sin\left(\frac{\pi}{2k_{\max}+1}\right)} \ge \left\| \mathbf{E}_{ij}^{(k)} \right\|_{\infty}$$

$$\Leftrightarrow 1 - \frac{1}{2k_{\max}\sin\left(\frac{\pi}{2k_{\max}+1}\right)} > C_2 \sigma \sqrt{\frac{\log n}{n}}$$

$$\Leftrightarrow k_{\max} > \max\left\{ 5, \frac{1}{\sqrt{2}\pi - 2 - 4\sqrt{2}\pi C_2 \sigma \sqrt{\log n/n}} \right\}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ♡ < 19/33

New Theory: Strong Recovery

Theorem (G.–Zhao 2019). Under (mild) assumptions, with high probability, the multi-frequency phase synchronization algorithm produces an estimate \hat{x} satisfying

$$|\operatorname{Corr}(\hat{x},z)| \geq 1 - rac{C'}{k_{\max}^2}$$

provided that

$$k_{\max} > \max\left\{5, \frac{1}{\sqrt{2}\pi - 2 - 4\sqrt{2}\pi C_2 \sigma \sqrt{\log n/n}}\right\}$$

In particular, $|\operatorname{Corr}(\hat{x}, z)| \to 1$ as $k_{\max} \to \infty$.

<ロ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ の Q (?) 20/33

Detour: Multi-Frequency Synchronization over SO(3)

Peter–Weyl:
$$f(g) = \sum_{k=0}^{\infty} d_k \operatorname{Tr} \left[\hat{f}(k) \rho_k(g) \right], \ \forall f \in L^2(\mathrm{SO}(3))$$

Random corruption model:

$$g_{ij} = \begin{cases} g_i g_j^{-1} & \text{with probability } r \\ \text{Unif (SO(3))} & \text{with probability } 1 - r \end{cases}$$

- ► Use spectral methods to estimate ρ₁(g_{ij}),..., ρ_{kmax}(g_{ij}), denote Ĥ^(k)_{ij} for the estimator of ρ_k(g_{ij})
- ► Solve a generalized harmonic retrieval problem on SO(3):

$$\hat{g}_{ij} = rgmax_{g \in \mathrm{SO}(3)} \sum_{k=1}^{k_{\mathrm{max}}} d_k \mathrm{Tr} \left[\widehat{H}_{ij}^{(k)} \rho_k^* \left(g
ight)
ight]$$

Works fantastic in practice, but no theory yet!

Outline

Motivation

Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

Some Representation Theoretic Patterns

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

From a Fibre Bundle Point of View

- Compute the rotation-invariant distance between all pairs of images d_{RID} (I_i, I_j) := min_{α∈[0,2π]} ||I_i − e^{ια}I_j||_F, and denote α_{ij} for the optimal alignment angle
- ▶ Fix threshold $\epsilon > 0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$W_{ij} := egin{cases} \exp\left(\iota lpha_{ij}
ight) & ext{if } d_{ ext{RID}}\left(I_i, I_j
ight) < \epsilon \ 0 & ext{otherwise} \end{cases}$$

Solve for the top 3 eigenvectors ψ₁, ψ₂, ψ₃ of W, which embeds I₁, I₂, ... into C³ by

$$I_{i} \longmapsto \Psi(I_{i}) := \frac{(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i))}{\|(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i))\|}$$

► Use correlation in the embedded C³ space to determine the closeness between viewing directions

Multi-Frequency Class Averaging

- Compute the rotation-invariant distance between all pairs of images d_{RID} (I_i, I_j) := min_{α∈[0,2π]} ||I_i − e^{ια}I_j||_F, and denote α_{ij} for the optimal alignment angle
- ▶ Fix threshold $\epsilon > 0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$W_{ij}^{(k)} := \begin{cases} \exp(\iota k \alpha_{ij}) & \text{if } d_{\text{RID}}(I_i, I_j) < \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Solve for the top 2k + 1 eigenvectors ψ₁^(k), ..., ψ_{2k+1}^(k) of W^(k), which embeds I₁, I₂,... into C^{2k+1} by

$$I_{i} \longmapsto \Psi^{(k)}(I_{i}) := \frac{(\psi_{1}(i), \dots, \psi_{2k+1}(i))}{\|(\psi_{1}(i), \dots, \psi_{2k+1}(i))\|}$$

► Use all correlations in the embedded C^{2k+1} (k = 1,..., k_{max}) spaces to determine the closeness between viewing directions

Why 2k + 1? Some Representation Theoretic Patterns

- ► (G.-Fan-Zhao 2019) The extrinsic model S² of viewing directions and the *intrinsic* model of the top eigenspace of W^(k) are isomorphic, following (Hadani & Singer, 2011)
- For sufficiently large sample size n and appropriately small € > 0, the top eigenspace of W^(k) is (2k + 1)-dimensional, and the spectral gap grows linearly in k:

$$\lambda_k^{(k)} - \lambda_{k+1}^{(k)} \sim rac{1+k}{4}\epsilon^2$$

• Larger $k \Rightarrow$ larger spectral gap \Rightarrow better numerical stability!

 Hadani & Singer. "Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II – The Class Averaging Problem," Foundations of Computational Mathematics, 11 (5), pp. 589–616 (2011).
 Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging

Multi-Frequency Information Improves Class Averaging

Histograms of true viewing angles between each image and its 50 nearest neighboring images

・ロト ・ 一 ト ・ 三 ト ・ 三 ・ つ へ ()
25/33

Outline

Motivation

Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Synchronization Problems: Geometric Picture

- Data:
 - graph $\Gamma = (V, E)$
 - ▶ topological group G, equipped with a norm ||·||, and a G-module F
 - edge potential $g: E \to G$ satisfying $g_{ij} = g_{ji}^{-1}, \ \forall (i,j) \in E$

Synchronization Problems: Geometric Picture

- Data:
 - graph $\Gamma = (V, E)$
 - ▶ topological group G, equipped with a norm ||·||, and a G-module F
 - edge potential $g: E \to G$ satisfying $g_{ij} = g_{ji}^{-1}, \forall (i,j) \in E$
- Flat Principal G-Bundle:
 - Let 𝔅 = {U_i | 1 ≤ i ≤ |V|} be an open cover of Γ (viewed as a 1-dimensional simplicial complex), where U_i is the (open) star neighborhood of vertex i.

• Triplet (g, G, Γ) defines a *flat principal G-bundle* \mathscr{B}_{ρ} over Γ

< □ ▷ < 큔 ▷ < 토 ▷ < 토 ▷ ○ ♀ ♀ 26/33

Theorem (Steenrod 1951, §2). If Lie group *G* acts on *Y*, $\mathfrak{U} = \{U_i\}$ is an open cover of *X*, $\{g_{ij} \in G \mid U_i \cap U_j \neq \emptyset\}$ satisfies

$$\begin{split} g_{ii} &= e \in G \quad \text{for all } U_i \\ g_{ij} &= g_{ji}^{-1} \quad \text{if } U_i \cap U_j \neq \emptyset \\ g_{ij}g_{jk} &= g_{ik} \quad \text{if } U_i \cap U_j \cap U_k \neq \emptyset \end{split}$$

then there exists a fibre bundle \mathscr{B} with base space X, fibre Y, group G, and bundle transformations $\{g_{ii}\}$.

27/33

No triple intersections!

Theorem (Steenrod 1951, §2). If Lie group *G* acts on *Y*, $\mathfrak{U} = \{U_i\}$ is an open cover of *X*, $\{g_{ij} \in G \mid U_i \cap U_j \neq \emptyset\}$ satisfies

$$g_{ii} = e \in G \quad \text{for all } U_i$$
$$g_{ij} = g_{ji}^{-1} \quad \text{if } U_i \cap U_j \neq \emptyset$$
$$g_{ij} = g_{ik} \quad \text{if } U_i \cap U_j \cap U_k \neq \emptyset$$

then there exists a fibre bundle \mathscr{B} with base space X, fibre Y, group G, and bundle transformations $\{g_{ij}\}$.

・ロト ・四ト ・ヨト ・ヨト ・ 日・ うらの

Representation and Associated Bundles

If M is a principal G-bundle over B, ρ : G → Aut (F) is a representation of G over a vector space F. Then ρ induces an associated F-bundle over B:

$$M \times_{\rho} F := M \times F / \sim$$

where the equivalence relation is defined by

$$(m \cdot g, v) \sim (m, \rho(g) v)$$

 Non-equivalent irreducible representations gives rise to distinct associated bundles

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Multi-Frequency \leftrightarrow Multiple Associated Bundles

- ▶ All irreducible representations of U(1): $\{\theta \to e^{\iota k \theta} \mid k \in \mathbb{Z}\}$
- Entrywise power: Inducing multiple irreducible representations, effectively creating many associated bundles
- Multi-frequency phase synchronization and class averaging both strive to distill features across multiple associate bundles (associated with the same principal bundles)

Diffusion and Community Detection on Fibre Bundles

• Tingran Gao. The Diffusion Geometry of Fibre Bundles: Horizontal Diffusion Maps. Applied and Computational Harmonic Analysis, online first, pp.1–69 (2019)

• Tingran Gao, Jacek Brodzki, and Sayan Mukherjee. The Geometry of Synchronization Problems and Learning Group Actions, Discrete & Computational Geometry, online first, pp.1–62 (2019)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Open Problems

Extension to other synchronization and multireference alignment problems over compact/noncompact Lie groups?

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

32/33

- Fundamental statistical/computational limits in synchronizability-based community detection?
- A learning paradigm on sheaves?

Thank You!

- AMS–Simons Travel Grant
- UChicago CDAC Data Science Discovery Seed Grant
- NSF CDS&E-MSS DMS-1854831

- Tingran Gao and Zhizhen Zhao. *Multi-Frequency Phase Synchronization*. Proceedings of the 36th International Conference on Machine Learning (ICML 2019), PMLR 97:2132–2141, 2019.
- Tingran Gao, Yifeng Fan, and Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
- Tingran Gao. The Diffusion Geometry of Fibre Bundles: Horizontal Diffusion Maps. Applied and Computational Harmonic Analysis, online first, pp.1–69 (2019)
- Tingran Gao, Jacek Brodzki, and Sayan Mukherjee. The Geometry of Synchronization Problems and Learning Group Actions, Discrete & Computational Geometry, online first, pp.1–62 (2019)