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Graph-Based Data Analysis
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Non-Scalar Edge Weights

dcP (Si , Sj) = inf
C∈A(Si ,Sj)

inf
R∈E(3)

(∫
Si

‖R (x)− C (x) ‖2 dvolSi (x)

) 1
2

dij
−−−→

fij
Si Sj
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Cryo-Electron Microscopy

• Singer et al. “Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors”, SIAM
Journal on Imaging Sciences, 4 (2), pp. 543–572 (2011).
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Cryo-Electron Microscopy: Real Challenge is Low SNR

It is imperative to apply class averaging in preprocessing!

• Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II – The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589–616 (2011).
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Phase Synchronization

I Problem: Recover rotation
angles θ1, . . . , θn ∈ [0, 2π]
from noisy measurements
of their pairwise offsets

θij = θi − θj + noise

for some or all pairs of (i , j)

I Examples: Class averaging
in cryo-EM image analysis,
shape registration and
community detection
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Phase Synchronization

I Setup: Phase vector z =
(
eιθ1 , . . . , eιθn

)> ∈ Cn
1, noisy

pairwise measurements in n-by-n Hermitian matrix

Hij =

{
eι(θi−θj) = zi z̄j with prob. r ∈ [0, 1]

Uniform (C1) with prob. 1− r

and Hij = Hji . This is known as a random corruption model.

I Goal: recover the true phase vector z (up to a global
multiplicative factor)

I Existing method: Rank-1 recovery (e.g. convex relaxations)

x̂ := arg min
x∈Cn

1

‖xx∗ − H‖2
F ⇔ x̂ := arg max

x∈Cn
1

x∗Hx
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I Goal: recover the true phase vector z (up to a global
multiplicative factor)

I Spectral Relaxation: solve for the top eigenvector of H,
denoted as x̃ (scaled to ‖x̃‖2 =

√
n), then define x̂ ∈ Cn

1 by

x̂i := x̃i/ |x̃i |

10/29



Outline

Motivation

I Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

I Multi-Frequency Formulation

I Theory

Application to Multi-Frequency Class Averaging

Joint work with Yifeng Fan (UIUC) & Zhizhen Zhao (UIUC)

11/29



Multi-Frequency Phase Synchronization: Main Idea

I The rank-1 recovery formulation
x̂ := arg min

x∈Cn
1

‖xx∗ − H‖2
F ⇔ x̂ := arg max

x∈Cn
1

x∗Hx

does not fully exploit that entries of x and H are phases!

I Key Observation: Raising a phase to any power yields
another phase! eιθ 7−→ eιkθ, k = 1, 2, . . .

I Solve a family of coupled matrix factorization problems jointly

x̂ (k) := arg max
x∈Cn

1

(xk)∗H(k)xk , k = 1, 2, . . . , kmax

where xk :=
(
xk1 , . . . , x

k
n

)> ∈ Cn
1, and H(k) is the n-by-n

Hermitian matrix with H
(k)
ij := Hk

ij , and then “stitch up” the

individual estimates x̂ (1), . . . , x̂ (kmax) to recover x̂

I The last step strives to recover θ from (noisy) measured
phases eιθ, . . . , eιkmaxθ, which is a simplified version of the
harmonic retrieval problem
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Multi-Frequency Phase Synchronization

I Multi-Frequency Formulation:

max
x∈Cn

1

kmax∑
k=1

(xk)∗H(k)xk

where xk :=
(
xk1 , . . . , x

k
n

)> ∈ Cn
1, and H(k) is the n-by-n

Hermitian matrix with H
(k)
ij := Hk

ij

I Intuition: Matching higher trigonometric moments

I Two-stage Algorithm: (i) Good initialization (ii) Local
methods e.g. gradient descent or (generalized) power iteration
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Initialization: Inspired by Harmonic Retrieval

I Fix kmax ≥ 1, build H(2), . . . ,H(kmax) out of H = H(1)

I For each k = 1, . . . , kmax, solve the subproblem

u(k) := arg max
v∈Cn

1

v∗H(k)v

using any convex relaxation, and set W (k) := u(k)
(
u(k)

)∗
I For all 1 ≤ i , j ≤ n, find the “peak location” of the

spectrogram

θ̂ij := arg max
φ∈[0,2π]

∣∣∣∣∣∣12
kmax∑

k=−kmax

W
(k)
ij e−ιkφ

∣∣∣∣∣∣
I Entrywise normalize the top eigenvector x̃ of Hermitian matrix

Ĥ, defined by Ĥij = eιθ̂ij , to get x̂ ∈ Cn
1
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How well does it work? Evaluate correlation |Corr (x̂ , z)|

Random Corruption Model, r = λ/
√
n

Our Method: |Corr (x̂, z)| −→ 1

as kmax � 1, even for λ < 1!

Previous Art: Only ensures

|Corr (x̂, z)| > 1√
n

for λ > 1
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Theory Now — Strong Recovery

Theorem (Gao & Zhao 2019). With all (mild) assumptions
satisfied, with high probability the multi-frequency phase
synchronization algorithm produces an estimate x̂ satisfying

Corr (x̂ , z) ≥ 1− C ′

k2
max

provided that

kmax > max

5,
1

√
2π
(

1− 4C2σ
√

log n/n
)
− 2

 .

In particular, Corr (x̂ , z)→ 1 as kmax →∞.

• Tingran Gao and Zhizhen Zhao, “Multi-Frequency Phase Synchronization.” Proceedings of the 36th
International Conference on Machine Learning, PMLR 97:2132–2141, 2019.
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Why does it work?

I By a perturbation analysis, after solving each subproblem

u(k) := arg max
v∈Cn

1

v∗H(k)v

we expect Ŵ (k) = u(k)(u(k))∗ = zk(zk)∗ + E (k) ≈ zk(zk)∗

I The peak finding step is expected to ensure

θ̂ij = arg max
φ∈[0,2π]

∣∣∣∣∣12
kmax∑
k=1

W
(k)
ij e−ιkφ

∣∣∣∣∣
≈ arg max

φ∈[0,2π]

∣∣∣∣∣12
kmax∑
k=1

zki z̄
k
j e
−ιkφ

∣∣∣∣∣ = θi − θj

provided that E (k) does not “perturb away” the maximum!
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Landscape Analysis of the Dirichlet Kernel

kmax∑
k=−kmax

W
(k)
ij e−ιkφ

=
kmax∑

k=−kmax

eιk(θi−θj)e−ιkφ +
kmax∑

k=−kmax

E
(k)
ij e−ιkφ

=

sin

[(
kmax +

1

2

)
(θi − θj − φ)

]
sin

[
1

2
(θi − θj − φ)

] +
kmax∑

k=−kmax

E
(k)
ij e−ιkφ

=: Dirkmax (θi − θj − φ) + Rkmax (φ)
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Landscape Analysis of the Dirichlet Kernel

Key Observation:
∣∣∣θ̂ij − (θi − θj)

∣∣∣ ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

0

2

4

6

8

10

12
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Landscape Analysis of the Dirichlet Kernel

Key Observation:
∣∣∣θ̂ij − (θi − θj)

∣∣∣ ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

which is satisfied if

2kmax + 1− ‖Rkmax‖∞ >
1

sin
(

π
2kmax+1

) + ‖Rkmax‖∞

⇐
∥∥∥E (k)

ij

∥∥∥
∞
∼ 1

kmax
‖Rkmax‖∞ < 1− 1

2kmax sin
(

π
2kmax+1

)
We just need a uniform upper bound for the E

(k)
ij ’s!
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Eigenvector perturbation analysis in `∞-norm!

I Standard perturbation bounds use `2-norm (e.g.
Davis–Kahan), but most application scenarios of spectral
methods require bounding the `∞-norm

I Active research area in recent years, e.g. [Eldridge et al.
(2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)];
[Zhong & Boumal (2018)]

I Sharpest results to date use a “leave-one-out” trick
popularized by statisticians

Lemma. For any 0 < ε ≤ 2, with probability at least
1− O

(
n−(2+ε)

)
, there exists absolute constant C > 0 such that

∥∥∥E (k)
ij

∥∥∥
∞
≤ C

√
log n

n
.

• Tingran Gao and Zhizhen Zhao, “Multi-Frequency Phase Synchronization.” Proceedings of the 36th
International Conference on Machine Learning, PMLR 97:2132–2141, 2019.
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Putting Everything Together

Theorem (Gao & Zhao 2019). With all (mild) assumptions
satisfied, with high probability the multi-frequency phase
synchronization algorithm produces an estimate x̂ satisfying

Corr (x̂ , z) ≥ 1− C ′

k2
max

provided that

kmax > max

5,
1

√
2π
(

1− 4C2σ
√

log n/n
)
− 2

 .

In particular, Corr (x̂ , z)→ 1 as kmax →∞.

• Tingran Gao and Zhizhen Zhao, “Multi-Frequency Phase Synchronization.” Proceedings of the 36th
International Conference on Machine Learning, PMLR 97:2132–2141, 2019.

23/29



Detour: Multi-Frequency Synchronization over SO(3)

Peter–Weyl: f (g) =
∞∑
k=0

dkTr
[
f̂ (k) ρk (g)

]
, ∀f ∈ L2 (SO(3))

I Random corruption model:

gij =

{
gig
−1
j with probability r

Unif (SO(3)) with probability 1− r

I Use spectral methods to estimate ρ1 (gij) , . . . , ρkmax (gij),

denote Ĥ
(k)
ij for the estimator of ρk (gij)

I Solve a generalized harmonic retrieval problem on SO(3):

ĝij = arg max
g∈SO(3)

kmax∑
k=1

dkTr
[
Ĥ

(k)
ij ρ∗k (g)

]
I Works fantastic in practice, but no theory yet!
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Multi-Frequency Information Improves Class Averaging

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” submitted. arxiv:1906.01082.
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Multi-Frequency Information Improves Class Averaging

• Yifeng Fan & Zhizhen Zhao. “Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion
Maps,” preprint. arXiv:1904.07772.
• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” submitted. arxiv:1906.01082.
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Open Problems

I Landscape and convergence analysis for the Stage 2
algorithm?

I Algorithm works for SO(3) seamlessly, but theory?

I Possible extension to other synchronization and multireference
alignment problems over compact/noncompact Lie groups?

I Mult-frequency vector diffusion maps?

I A learning paradigm on sheaves?

28/29



Thank You!

0

2

4

6

8

10

12

• Tingran Gao and Zhizhen Zhao, “Multi-Frequency Phase Synchronization.” Proceedings of the 36th
International Conference on Machine Learning, PMLR 97:2132–2141, 2019.
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