Multi-Representation Manifold Learning on Fibre Bundles

Tingran Gao
Committee on Computational and Applied Mathematics Department of Statistics
University of Chicago
Applied Math \& Analysis Seminar
Duke University, Durham NC

September 25, 2019

Outline

Motivation

- Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

- Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Outline

Motivation

- Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

- Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Representation?

GTM129

Robert Delaunay (1885-1941)

Word2Vec

Representation?

GTM129

Robert Delaunay (1885-1941)

Word2Vec

TAXATION WITHOUT REPRESENTATION

Graph: A Flexible Data Representation

Non-Scalar Edge Weights

$$
d_{\mathrm{cP}}\left(S_{i}, S_{j}\right)=\inf _{\mathcal{C} \in \mathcal{A}\left(S_{i}, S_{j}\right)} \inf _{R \in \mathbb{E}(3)}\left(\int_{S_{i}}\|R(x)-\mathcal{C}(x)\|^{2} d \operatorname{vol}_{S_{i}}(x)\right)^{\frac{1}{2}}
$$

Do Graph Representations Have Enough Expressive Power?

Cryo－Electron Microscopy

－Singer et al．＂Viewing Angle Classification of Cryo－Electron Microscopy Images using Eigenvectors＂，SIAM Journal on Imaging Sciences， 4 （2），pp．543－572（2011）．

Cryo-Electron Microscopy: Real Challenge is Low SNR

Fig. 3 The left most image is a clean simulated projection image of the E.coli 50S ribosomal subunit. The other three images are real electron microscope images of the same subunit

Apply Class Averaging to improve SNR!

- For each image, identify nearest neighbors in terms of similar viewing directions
- Average out the image with the identified neighbor images (with respect to the correct pairwise rotations)
- Hadani \& Singer. "Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II - The Class Averaging Problem," Foundations of Computational Mathematics, 11 (5), pp. 589-616 (2011).

Phase Synchronization

- Problem: Recover rotation angles $\theta_{1}, \ldots, \theta_{n} \in[0,2 \pi]$ from noisy measurements of their pairwise offsets

$$
\theta_{i j} \equiv \theta_{i}-\theta_{j}+\text { noise }
$$

for some or all pairs of (i, j)

- Examples: Class averaging in cryo-EM image analysis, shape registration and community detection

Phase Synchronization (Notation: $\mathbb{C}_{1}^{n}:=[\mathrm{U}(1)]^{n}$)

- Setup: Phase vector $z=\left(e^{\iota \theta_{1}}, \ldots, e^{\iota \theta_{n}}\right)^{\top} \in \mathbb{C}_{1}^{n}$, noisy pairwise measurements in n-by- n Hermitian matrix

$$
H_{i j}= \begin{cases}e^{\iota\left(\theta_{i}-\theta_{j}\right)}=z_{i} \bar{z}_{j} & \text { with prob. } r \in[0,1] \\ \text { Uniform }(\mathrm{U}(1)) & \text { with prob. } 1-r\end{cases}
$$

and $H_{i j}=\overline{H_{j i}}$. This is known as a random corruption model.

- Goal: Recover the true phase vector z (up to a global multiplicative factor)
- Existing method: Rank-1 recovery (e.g. convex relaxations)

$$
\hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \min }\left\|x x^{*}-H\right\|_{\mathrm{F}}^{2} \quad \Leftrightarrow \quad \hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \max } x^{*} H x
$$

Phase Synchronization (Notation: $\mathbb{C}_{1}^{n}:=[\mathrm{U}(1)]^{n}$)

- Setup: Phase vector $z=\left(e^{\iota \theta_{1}}, \ldots, e^{\iota \theta_{n}}\right)^{\top} \in \mathbb{C}_{1}^{n}$, noisy pairwise measurements in n-by- n Hermitian matrix

$$
H_{i j}= \begin{cases}e^{\iota\left(\theta_{i}-\theta_{j}\right)}=z_{i} \bar{z}_{j} & \text { with prob. } r \in[0,1] \\ \operatorname{Uniform}(\mathrm{U}(1)) & \text { with prob. } 1-r\end{cases}
$$

and $H_{i j}=\overline{H_{j i}}$. This is known as a random corruption model.

- Goal: Recover the true phase vector z (up to a global multiplicative factor)
- Spectral Relaxation: solve for the top eigenvector of H, denoted as \tilde{x} (scaled to $\|\tilde{x}\|_{2}=\sqrt{n}$), then define $\hat{x} \in \mathbb{C}_{1}^{n}$ by

$$
\hat{x}_{i}:=\tilde{x}_{i} /\left|\tilde{x}_{i}\right|
$$

Outline

Motivation

- Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

- Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Multi-Frequency Phase Synchronization: Main Idea

- The rank-1 recovery formulation

$$
\hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \min }\left\|x x^{*}-H\right\|_{\mathrm{F}}^{2} \quad \Leftrightarrow \quad \hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \max } x^{*} H x
$$

does not fully exploit that entries of x and H are phases!

Multi-Frequency Phase Synchronization: Main Idea

- The rank-1 recovery formulation

$$
\hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \min }\left\|x x^{*}-H\right\|_{F}^{2} \quad \Leftrightarrow \quad \hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \max } x^{*} H x
$$

does not fully exploit that entries of x and H are phases!

- Key Observation: Raising a phase to any power yields another phase! $e^{\iota \theta} \longmapsto e^{\iota k \theta}, \quad k=1,2, \ldots$

Multi-Frequency Phase Synchronization: Main Idea

- The rank-1 recovery formulation

$$
\hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \min }\left\|x x^{*}-H\right\|_{F}^{2} \quad \Leftrightarrow \quad \hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \max } x^{*} H x
$$

does not fully exploit that entries of x and H are phases!

- Key Observation: Raising a phase to any power yields another phase! $e^{\iota \theta} \longmapsto e^{\iota k \theta}, \quad k=1,2, \ldots$
- Solve a family of coupled matrix factorization problems jointly

$$
\hat{x}^{(k)}:=\arg \max \left(x^{k}\right)^{*} H^{(k)} x^{k}, \quad k=1,2, \ldots, k_{\max }
$$

where $x^{k}:=\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)^{\top} \in \mathbb{C}_{1}^{n}$, and $H^{(k)}$ is the n-by- n Hermitian matrix with $H_{i j}^{(k)}:=H_{i j}^{k}$, and then "stitch up" the individual estimates $\hat{x}^{(1)}, \ldots, \hat{x}^{\left(k_{\max }\right)}$ to recover \hat{x}

Multi-Frequency Phase Synchronization: Main Idea

- The rank-1 recovery formulation

$$
\hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \min }\left\|x x^{*}-H\right\|_{\mathrm{F}}^{2} \quad \Leftrightarrow \quad \hat{x}:=\underset{x \in \mathbb{C}_{1}^{n}}{\arg \max } x^{*} H x
$$

does not fully exploit that entries of x and H are phases!

- Key Observation: Raising a phase to any power yields another phase! $e^{\iota \theta} \longmapsto e^{\iota k \theta}, \quad k=1,2, \ldots$
- Solve a family of coupled matrix factorization problems jointly

$$
\hat{x}^{(k)}:=\arg \max \left(x^{k}\right)^{*} H^{(k)} x^{k}, \quad k=1,2, \ldots, k_{\max }
$$

where $x^{k}:=\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)^{\top} \in \mathbb{C}_{1}^{n}$, and $H^{(k)}$ is the n-by- n Hermitian matrix with $H_{i j}^{(k)}:=H_{i j}^{k}$, and then "stitch up" the individual estimates $\hat{x}^{(1)}, \ldots, \hat{x}^{\left(k_{\max }\right)}$ to recover \hat{x}

- The "stitching" step strives to recover $e^{\iota \theta}$ from noisy measurements of $e^{\iota \theta}, \ldots, e^{\iota k_{\max } \theta}$, which is a version of harmonic retrieval

Multi-Frequency Phase Synchronization

- Multi-Frequency Formulation:

$$
\max _{x \in \mathbb{C}_{1}^{n}} \sum_{k=1}^{k_{\max }}\left(x^{k}\right)^{*} H^{(k)} x^{k}
$$

where $x^{k}:=\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)^{\top} \in \mathbb{C}_{1}^{n}$, and $H^{(k)}$ is the n-by- n
Hermitian matrix with $H_{i j}^{(k)}:=H_{i j}^{k}$

- Intuition: Matching higher trigonometric moments
- Two-stage Algorithm: (i) Good initialization (ii) Local methods e.g. gradient descent or (generalized) power iteration

Initialization: Inspired by Harmonic Retrieval

- Fix $k_{\max } \geq 1$, build $H^{(2)}, \ldots, H^{\left(k_{\max }\right)}$ out of $H=H^{(1)}$ by taking entrywise powers of H

Initialization: Inspired by Harmonic Retrieval

- Fix $k_{\max } \geq 1$, build $H^{(2)}, \ldots, H^{\left(k_{\max }\right)}$ out of $H=H^{(1)}$ by taking entrywise powers of H
- For each $k=1, \ldots, k_{\max }$, find a reasonably good symmetric rank-1 approximation

$$
W^{(k)}:=\underset{\substack{Y=Y^{\top} \\ \operatorname{rank}(Y)=1}}{\arg \max }\left\|H^{(k)}-Y\right\|_{F}^{2}
$$

using e.g. spectral method

Initialization: Inspired by Harmonic Retrieval

- Fix $k_{\max } \geq 1$, build $H^{(2)}, \ldots, H^{\left(k_{\max }\right)}$ out of $H=H^{(1)}$ by taking entrywise powers of H
- For each $k=1, \ldots, k_{\max }$, find a reasonably good symmetric rank-1 approximation

$$
W^{(k)}:=\underset{\substack{Y=Y^{\top} \\ \operatorname{rank}(Y)=1}}{\arg \max }\left\|H^{(k)}-Y\right\|_{F}^{2}
$$

using e.g. spectral method

- For all $1 \leq i, j \leq n$, find the "peak location" of the spectrogram

$$
\hat{\theta}_{i j}:=\underset{\phi \in[0,2 \pi]}{\arg \max }\left|\frac{1}{2} \sum_{k=-k_{\max }}^{k_{\max }} W_{i j}^{(k)} e^{-\iota k \phi}\right|
$$

Initialization: Inspired by Harmonic Retrieval

- Fix $k_{\max } \geq 1$, build $H^{(2)}, \ldots, H^{\left(k_{\max }\right)}$ out of $H=H^{(1)}$ by taking entrywise powers of H
- For each $k=1, \ldots, k_{\max }$, find a reasonably good symmetric rank-1 approximation

$$
W^{(k)}:=\underset{\substack{Y=Y^{\top} \\ \operatorname{rank}(Y)=1}}{\arg \max }\left\|H^{(k)}-Y\right\|_{F}^{2}
$$

using e.g. spectral method

- For all $1 \leq i, j \leq n$, find the "peak location" of the spectrogram

$$
\hat{\theta}_{i j}:=\underset{\phi \in[0,2 \pi]}{\arg \max }\left|\frac{1}{2} \sum_{k=-k_{\max }}^{k_{\max }} W_{i j}^{(k)} e^{-\iota k \phi}\right|
$$

- Apply the spectral method yet again to the Hermitian matrix \widehat{H} to get $\hat{x} \in \mathbb{C}_{1}^{n}$, where $\widehat{H}_{i j}=e^{\iota \hat{\theta}_{i j}}$

How well does it work? Evaluate correlation $|\operatorname{Corr}(\hat{x}, z)|$

Outline

Motivation

- Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

- Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

New Theory: Strong Recovery

Theorem (G.-Zhao 2019). Under (mild) assumptions, with high probability, the multi-frequency phase synchronization algorithm produces an estimate \hat{x} satisfying

$$
|\operatorname{Corr}(\hat{x}, z)| \geq 1-\frac{C^{\prime}}{k_{\max }^{2}}
$$

provided that

$$
k_{\max }>\max \left\{5, \frac{1}{\sqrt{2} \pi-2-4 \sqrt{2} \pi C_{2} \sigma \sqrt{\log n / n}}\right\}
$$

In particular, $|\operatorname{Corr}(\hat{x}, z)| \rightarrow 1$ as $k_{\max } \rightarrow \infty$.

Why does it work?

- By a perturbation analysis, after solving each subproblem

$$
W^{(k)}:=\underset{\substack{Y=Y^{\top} \\ \operatorname{rank}(Y)=1}}{\arg \max }\left\|H^{(k)}-Y\right\|_{F}^{2}
$$

we expect $W^{(k)}=z^{k}\left(z^{k}\right)^{*}+E^{(k)} \approx z^{k}\left(z^{k}\right)^{*}$, where $z_{i}=e^{\iota \theta_{i}}$

- The peak finding step is expected to ensure

$$
\begin{aligned}
\hat{\theta}_{i j} & =\underset{\phi \in[0,2 \pi]}{\arg \max }\left|\frac{1}{2} \sum_{k=1}^{k_{\max }} W_{i j}^{(k)} e^{-\iota k \phi}\right| \\
& \approx \underset{\phi \in[0,2 \pi]}{\arg \max }\left|\frac{1}{2} \sum_{k=1}^{k_{\max }} e^{\iota k\left(\theta_{i}-\theta_{j}\right)} e^{-\iota k \phi}\right|=\theta_{i}-\theta_{j}
\end{aligned}
$$

provided that $E^{(k)}$ does not "perturb away" the maximum!

Landscape Analysis of the Dirichlet Kernel

$$
\begin{aligned}
& \sum_{k=-k_{\max }}^{k_{\max }} W_{i j}^{(k)} e^{-\iota k \phi} \\
= & \sum_{k=-k_{\max }}^{k_{\max }} e^{\iota k\left(\theta_{i}-\theta_{j}\right)} e^{-\iota k \phi}+\sum_{k=-k_{\max }}^{k_{\max }} E_{i j}^{(k)} e^{-\iota k \phi}
\end{aligned}
$$

Landscape Analysis of the Dirichlet Kernel

$$
\begin{aligned}
& \sum_{k=-k_{\max }}^{k_{\max }} W_{i j}^{(k)} e^{-\iota k \phi} \\
= & \sum_{k=-k_{\max }}^{k_{\max }} e^{\iota k\left(\theta_{i}-\theta_{j}\right)} e^{-\iota k \phi}+\sum_{k=-k_{\max }}^{k_{\max }} E_{i j}^{(k)} e^{-\iota k \phi} \\
= & \frac{\sin \left[\left(k_{\max }+\frac{1}{2}\right)\left(\theta_{i}-\theta_{j}-\phi\right)\right]}{\sin \left[\frac{1}{2}\left(\theta_{i}-\theta_{j}-\phi\right)\right]}+\sum_{k=-k_{\max }}^{k_{\max }} E_{i j}^{(k)} e^{-\iota k \phi} \\
= & : \operatorname{Dir}_{k_{\max }}\left(\phi-\left(\theta_{i}-\theta_{j}\right)\right)+R_{k_{\max }}(\phi)
\end{aligned}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\text {max }}+1}$ whenever

$$
2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
\begin{aligned}
& 2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty} \\
\Leftarrow & 2 k_{\max }-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\frac{\pi}{2 k_{\max }+1}\right)}+\left\|R_{k_{\max }}\right\|_{\infty}
\end{aligned}
$$

A Proof by Picture (Notation: $\left.\Delta \theta_{i j}:=\hat{\theta}_{i j}-\left(\theta_{i}-\theta_{j}\right)\right)$

Key Observation: $\left|\Delta \theta_{i j}\right| \leq \theta_{*}<\frac{4 \pi}{2 k_{\max }+1}$ whenever

$$
\begin{aligned}
& 2 k_{\max }+1-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\theta_{*} / 2\right)}+\left\|R_{k_{\max }}\right\|_{\infty} \\
\Leftarrow & 2 k_{\max }-\left\|R_{k_{\max }}\right\|_{\infty}>\frac{1}{\sin \left(\frac{\pi}{2 k_{\max }+1}\right)}+\left\|R_{k_{\max }}\right\|_{\infty} \\
\Leftarrow & 1-\frac{1}{2 k_{\max } \sin \left(\frac{\pi}{2 k_{\max }+1}\right)}>\frac{1}{k_{\max }}\left\|R_{k_{\max }}\right\|_{\infty} \sim\left\|E_{i j}^{(k)}\right\|_{\infty}
\end{aligned}
$$

What are the odds?
Can be estimated with a uniform upper bound for the $E_{i j}^{(k)}$'s!

Eigenvector perturbation analysis in ℓ_{∞}-norm!

- Standard perturbation bounds use ℓ_{2}-norm (e.g. Davis-Kahan), but most application scenarios of spectral methods require bounding the ℓ_{∞}-norm
- Active research area in recent years, e.g. [Eldridge et al. (2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)]; [Zhong \& Boumal (2018)]
- Sharpest results to date use a "leave-one-out" trick popularized by statisticians
Lemma (G.-Zhao 2019). For any $0<\epsilon \leq 2$, with probability at least $1-O\left(n^{-(2+\epsilon)}\right)$, there exists absolute constant $C_{2}>0$ s.t.

$$
\left\|E_{i j}^{(k)}\right\|_{\infty} \leq C_{2} \sigma \sqrt{\frac{\log n}{n}}
$$

Putting Everything Together, with a Union Bound

With high probability, uniformly for all $i, j \in[n], \hat{\theta}_{i j}$ is close to the true offset $\theta_{i}-\theta_{j}$ as long as

$$
\begin{aligned}
& 1-\frac{1}{2 k_{\max } \sin \left(\frac{\pi}{2 k_{\max }+1}\right)} \geq\left\|E_{i j}^{(k)}\right\|_{\infty} \\
& \Leftarrow 1-\frac{1}{2 k_{\max } \sin \left(\frac{\pi}{2 k_{\max }+1}\right)}>C_{2} \sigma \sqrt{\frac{\log n}{n}} \\
& \Leftarrow k_{\max }>\max \left\{5, \frac{1}{\sqrt{2} \pi-2-4 \sqrt{2} \pi C_{2} \sigma \sqrt{\log n / n}}\right\}
\end{aligned}
$$

New Theory: Strong Recovery

Theorem (G.-Zhao 2019). Under (mild) assumptions, with high probability, the multi-frequency phase synchronization algorithm produces an estimate \hat{x} satisfying

$$
|\operatorname{Corr}(\hat{x}, z)| \geq 1-\frac{C^{\prime}}{k_{\max }^{2}}
$$

provided that

$$
k_{\max }>\max \left\{5, \frac{1}{\sqrt{2} \pi-2-4 \sqrt{2} \pi C_{2} \sigma \sqrt{\log n / n}}\right\}
$$

In particular, $|\operatorname{Corr}(\hat{x}, z)| \rightarrow 1$ as $k_{\max } \rightarrow \infty$.

Detour: Multi-Frequency Synchronization over SO(3)

Peter-Weyl: $\quad f(g)=\sum_{k=0}^{\infty} d_{k} \operatorname{Tr}\left[\hat{f}(k) \rho_{k}(g)\right], \forall f \in L^{2}(S O(3))$

- Random corruption model:

$$
g_{i j}= \begin{cases}g_{i} g_{j}^{-1} & \text { with probability } r \\ \text { Unif }(\mathrm{SO}(3)) & \text { with probability } 1-r\end{cases}
$$

- Use spectral methods to estimate $\rho_{1}\left(g_{i j}\right), \ldots, \rho_{k_{\max }}\left(g_{i j}\right)$, denote $\widehat{H}_{i j}^{(k)}$ for the estimator of $\rho_{k}\left(g_{i j}\right)$
- Solve a generalized harmonic retrieval problem on $\mathrm{SO}(3)$:

$$
\hat{g}_{i j}=\underset{g \in \operatorname{SO}(3)}{\arg \max } \sum_{k=1}^{k_{\max }} d_{k} \operatorname{Tr}\left[\widehat{H}_{i j}^{(k)} \rho_{k}^{*}(g)\right]
$$

- Works fantastic in practice, but no theory yet!

Outline

Motivation

- Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

- Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Joint work with Yifeng Fan (UIUC) \& Zhizhen Zhao (UIUC)

Class Averaging

- Compute the rotation-invariant distance between all pairs of images $d_{\text {RID }}\left(I_{i}, l_{j}\right):=\min _{\alpha \in[0,2 \pi]}\left\|I_{i}-e^{\iota \alpha} l_{j}\right\|_{F}$, and denote $\alpha_{i j}$ for the optimal alignment angle

Class Averaging

- Compute the rotation-invariant distance between all pairs of images $d_{\text {RID }}\left(I_{i}, l_{j}\right):=\min _{\alpha \in[0,2 \pi]}\left\|I_{i}-e^{\iota \alpha} l_{j}\right\|_{F}$, and denote $\alpha_{i j}$ for the optimal alignment angle
- Fix threshold $\epsilon>0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$
W_{i j}:= \begin{cases}\exp \left(\iota \alpha_{i j}\right) & \text { if } d_{\mathrm{RID}}\left(\iota_{i}, l_{j}\right)<\epsilon \\ 0 & \text { otherwise }\end{cases}
$$

Class Averaging

- Compute the rotation-invariant distance between all pairs of images $d_{\text {RID }}\left(I_{i}, l_{j}\right):=\min _{\alpha \in[0,2 \pi]}\left\|I_{i}-e^{\iota \alpha} l_{j}\right\|_{F}$, and denote $\alpha_{i j}$ for the optimal alignment angle
- Fix threshold $\epsilon>0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$
W_{i j}:= \begin{cases}\exp \left(\iota \alpha_{i j}\right) & \text { if } d_{\mathrm{RID}}\left(\iota_{i}, l_{j}\right)<\epsilon \\ 0 & \text { otherwise }\end{cases}
$$

- Solve for the top 3 eigenvectors $\psi_{1}, \psi_{2}, \psi_{3}$ of W, which embeds I_{1}, I_{2}, \ldots into \mathbb{C}^{3} by

$$
I_{i} \longmapsto \Psi\left(I_{i}\right):=\frac{\left(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i)\right)}{\left\|\left(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i)\right)\right\|}
$$

Class Averaging

- Compute the rotation-invariant distance between all pairs of images $d_{\text {RID }}\left(I_{i}, l_{j}\right):=\min _{\alpha \in[0,2 \pi]}\left\|I_{i}-e^{\iota \alpha} l_{j}\right\|_{F}$, and denote $\alpha_{i j}$ for the optimal alignment angle
- Fix threshold $\epsilon>0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$
W_{i j}:= \begin{cases}\exp \left(\iota \alpha_{i j}\right) & \text { if } d_{\mathrm{RID}}\left(\iota_{i}, l_{j}\right)<\epsilon \\ 0 & \text { otherwise }\end{cases}
$$

- Solve for the top 3 eigenvectors $\psi_{1}, \psi_{2}, \psi_{3}$ of W, which embeds I_{1}, I_{2}, \ldots into \mathbb{C}^{3} by

$$
I_{i} \longmapsto \Psi\left(I_{i}\right):=\frac{\left(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i)\right)}{\left\|\left(\psi_{1}(i), \psi_{2}(i), \psi_{3}(i)\right)\right\|}
$$

- Use correlation in the embedded \mathbb{C}^{3} space to determine the closeness between viewing directions

Multi-Frequency Class Averaging

- Compute the rotation-invariant distance between all pairs of images $d_{\text {RID }}\left(I_{i}, l_{j}\right):=\min _{\alpha \in[0,2 \pi]}\left\|I_{i}-e^{\iota \alpha} l_{j}\right\|_{F}$, and denote $\alpha_{i j}$ for the optimal alignment angle
- Fix threshold $\epsilon>0$ and define Hermitian $W \in \mathbb{C}^{n \times n}$ by

$$
W_{i j}^{(k)}:= \begin{cases}\exp \left(\iota k \alpha_{i j}\right) & \text { if } d_{\mathrm{RID}}\left(\iota_{i}, l_{j}\right)<\epsilon \\ 0 & \text { otherwise }\end{cases}
$$

- Solve for the top $2 k+1$ eigenvectors $\psi_{1}^{(k)}, \cdots, \psi_{2 k+1}^{(k)}$ of $W^{(k)}$, which embeds I_{1}, I_{2}, \ldots into $\mathbb{C}^{2 k+1}$ by

$$
I_{i} \longmapsto \psi^{(k)}\left(I_{i}\right):=\frac{\left(\psi_{1}(i), \ldots, \psi_{2 k+1}(i)\right)}{\left\|\left(\psi_{1}(i), \ldots, \psi_{2 k+1}(i)\right)\right\|}
$$

- Use all correlations in the embedded $\mathbb{C}^{2 k+1}\left(k=1, \ldots, k_{\max }\right)$ spaces to determine the closeness between viewing directions

Why $2 k+1$? Some Representation Theoretic Patterns

- (G., Fan, Zhao 2019) For sufficiently large sample size n and appropriately small $\epsilon>0$, the top eigenspace of $W^{(k)}$ is $(2 k+1)$-dimensional, and the spectral gap grows linearly in k :

$$
\lambda_{k}^{(k)}-\lambda_{k+1}^{(k)} \sim \frac{1+k}{4} \epsilon^{2}
$$

- Larger $k \Rightarrow$ larger spectral gap \Rightarrow better numerical stability!
- Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.

More Representation Theoretic Patterns......

- (G.-Fan-Zhao 2019) The viewing angle $\theta_{i j}$ between image i and image j satisfies

$$
\left|\left\langle\Psi^{(k)}\left(I_{i}\right), \Psi^{(k)}\left(I_{j}\right)\right\rangle\right|=\left(\frac{1+\cos \theta_{i j}}{2}\right)^{k}
$$

- Larger $k \Rightarrow$ easier thresholding
- Can also jointly use $k=1, \cdots, k_{\max }$ to construct polynomial filters for $\cos \theta_{i j}$
- Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.

Multi-Frequency Information Improves Class Averaging

Histograms of true viewing angles between each image and its 50 nearest neighboring images

Multi-Frequency Information Improves Class Averaging

- Yifeng Fan \& Zhizhen Zhao. Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion Maps. arXiv:1904.07772.
- Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.

Outline

Motivation

- Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

- A Multi-Frequency Formulation
- A Proof by Picture

Multi-Frequency Class Averaging

- Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Joint work with Yifeng Fan (UIUC) \& Zhizhen Zhao (UIUC)

Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- topological group G, equipped with a norm $\|\cdot\|$, and a G-module F
- edge potential $g: E \rightarrow G$ satisfying $g_{i j}=g_{j i}^{-1}, \forall(i, j) \in E$

Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- topological group G, equipped with a norm $\|\cdot\|$, and a G-module F
- edge potential $g: E \rightarrow G$ satisfying $g_{i j}=g_{j i}^{-1}, \forall(i, j) \in E$
- Goal:
- find a vertex potential $f: V \rightarrow G$ or F such that

$$
f_{i}=g_{i j} f_{j}, \quad \forall(i, j) \in E
$$

- The goal can be achieved if and only if $g_{i j}=f_{i} f_{j}^{-1}$
- Not always feasible!

Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- topological group G, equipped with a norm $\|\cdot\|$, and a G-module F
- edge potential $g: E \rightarrow G$ satisfying $g_{i j}=g_{j i}^{-1}, \forall(i, j) \in E$
- Goal:
- find a vertex potential $f: V \rightarrow G$ or F such that

$$
f_{i}=g_{i j} f_{j}, \quad \forall(i, j) \in E
$$

- The goal can be achieved if and only if $g_{i j}=f_{i} f_{j}^{-1}$
- Not always feasible!
- If infeasible, find the "closest solution" in the sense of

$$
\min _{\substack{f: V \rightarrow G \\\|f\| \neq 0}} \frac{1}{2} \frac{\sum_{i, j \in V}\left\|f_{i}-g_{i j} f_{j}\right\|^{2}}{\sum_{i \in V}\left\|f_{i}\right\|^{2}}(=: \eta(f))
$$

Geometric Picture

- Data:
- graph $\Gamma=(V, E)$
- topological group G, equipped with a norm $\|\cdot\|$, and a G-module F
- edge potential $g: E \rightarrow G$ satisfying $g_{i j}=g_{j i}^{-1}, \forall(i, j) \in E$

Geometric Picture

- Data:
- graph $\Gamma=(V, E)$
- topological group G, equipped with a norm $\|\cdot\|$, and a G-module F
- edge potential $g: E \rightarrow G$ satisfying $g_{i j}=g_{j i}^{-1}, \forall(i, j) \in E$
- Flat Principal G-Bundle:
- Let $\mathfrak{U}=\left\{U_{i}|1 \leq i \leq|V|\}\right.$ be an open cover of Γ (viewed as a 1-dimensional simplicial complex), where U_{i} is the (open) star neighborhood of vertex i.

- Triplet (g, G, Γ) defines a flat principal G-bundle \mathscr{B}_{ρ} over Γ

Fibre Bundle: $\mathscr{E}=(E, M, F, \pi)$ is called a F-bundle over M if

- M: base manifold
- F: fibre manifold
- E: total manifold
- $\pi: E \rightarrow M$: smooth surjective map (bundle projection)
- local triviality: for "small" open set $U \subset M, \pi^{-1}(U)$ is diffeomorphic to $U \times F$

PRINCETON LANDMARKS il mathematics

Norman Steenrod

The lopology offlicre Punders

Theorem (Steenrod 1951, §2). If Lie group G acts on Y, $\mathfrak{U}=\left\{U_{i}\right\}$ is an open cover of X, $\left\{g_{i j} \in G \mid U_{i} \cap U_{j} \neq \emptyset\right\}$ satisfies

$$
\begin{aligned}
g_{i i} & =e \in G \quad \text { for all } U_{i} \\
g_{i j} & =g_{j i}^{-1} \quad \text { if } U_{i} \cap U_{j} \neq \emptyset \\
g_{i j} g_{j k} & =g_{i k} \quad \text { if } U_{i} \cap U_{j} \cap U_{k} \neq \emptyset
\end{aligned}
$$

then there exists a fibre bundle \mathscr{B} with base space X, fibre Y, group G, and bundle transformations $\left\{g_{i j}\right\}$.

No triple intersections!

Theorem (Steenrod 1951, §2). If Lie group G acts on Y, $\mathfrak{U}=\left\{U_{i}\right\}$ is an open cover of X, $\left\{g_{i j} \in G \mid U_{i} \cap U_{j} \neq \emptyset\right\}$ satisfies

$$
\begin{aligned}
& g_{i i}=e \in G \quad \text { for all } U_{i} \\
& g_{i j}=g_{j i}^{-1} \quad \text { if } U_{i} \cap U_{j} \neq \emptyset
\end{aligned}
$$

then there exists a fibre bundle \mathscr{B} with base space X, fibre Y, group G, and bundle transformations $\left\{g_{i j}\right\}$.

Representation and Associated Bundles

- If M is a principal G-bundle over $B, \rho: G \rightarrow \operatorname{Aut}(F)$ is a representation of G over a vector space F. Then ρ induces an associated F-bundle over B :

$$
M \times{ }_{\rho} F:=M \times F / \sim
$$

where the equivalence relation is defined by

$$
(m \cdot g, v) \sim(m, \rho(g) v)
$$

- Non-equivalent irreducible representations gives rise to distinct associated bundles

Multi-Frequency \leftrightarrow Multiple Associated Bundles

- All irreducible representations of $\mathrm{U}(1):\left\{\theta \rightarrow e^{\iota k \theta} \mid k \in \mathbb{Z}\right\}$
- Entrywise power: Inducing multiple irreducible representations, effectively creating many associated bundles
- Multi-frequency phase synchronization and class averaging both strive to distill features across multiple associate bundles (associated with different principal bundles)

How Far Can We Push This idea Further?

- Faster ways than arg max Peter-Weyl?

$$
\hat{g}_{i j}=\underset{g \in G}{\arg \max } \sum_{k=1}^{k_{\max }} d_{k} \operatorname{Tr}\left[\widehat{H}_{i j}^{(k)} \rho_{k}^{*}(g)\right]
$$

- Alternative ways to leverage the algebraic consistency across irreducible representations / associated bundles?

Bispectrum

- Example: Construct invariant features such as the bispectrum, using algebraic constraints such as

$$
e^{\iota k_{1} \theta_{i j}} \cdot e^{\iota k_{2} \theta_{i j}}=e^{\iota\left(k_{1}+k_{2}\right) \theta_{i j}}
$$

Bispectrum

- Example: Construct invariant features such as the bispectrum, using algebraic constraints such as

$$
e^{\iota k_{1} \theta_{i j}} \cdot e^{\iota k_{2} \theta_{i j}}=e^{\iota\left(k_{1}+k_{2}\right) \theta_{i j}}
$$

- In phase synchronization, this amounts to comparing 1 with

$$
\left|W_{i j}^{\left(k_{1}\right)} W_{i j}^{\left(k_{2}\right)} \overline{W_{i j}^{\left(k_{1}+k_{2}\right)}}\right| \text { for each pair }(i, j)
$$

Bispectrum

- Example: Construct invariant features such as the bispectrum, using algebraic constraints such as

$$
e^{\iota k_{1} \theta_{i j}} \cdot e^{\iota k_{2} \theta_{i j}}=e^{\iota\left(k_{1}+k_{2}\right) \theta_{i j}}
$$

- In phase synchronization, this amounts to comparing 1 with

$$
\left|W_{i j}^{\left(k_{1}\right)} W_{i j}^{\left(k_{2}\right)} \overline{W_{i j}^{\left(k_{1}+k_{2}\right)}}\right| \text { for each pair }(i, j)
$$

- In general, with the help of Clebsch-Gordan coefficients $C_{k_{1}, k_{2}}$, compare the following with the identity matrix $I_{d_{1} d_{2}}$:

$$
\left[F_{i j}^{\left(k_{1}\right)} \bigotimes F_{i j}^{\left(k_{2}\right)}\right] C_{k_{1}, k_{2}}\left[\bigoplus_{k \in k_{1} \otimes k_{2}} F_{i j}^{(k)}\right] C_{k_{1}, k_{2}}^{*}
$$

where $F_{i j}^{\left(k_{1}\right)}, F_{i j}^{\left(k_{2}\right)}, F_{i j}^{(k)}$ estimate $\rho_{k_{1}}\left(g_{i j}\right), \rho_{k_{2}}\left(g_{i j}\right), \rho_{k}\left(g_{i j}\right)$

Bispectrum

- Example: Construct invariant features such as the bispectrum, using algebraic constraints such as

$$
e^{\iota k_{1} \theta_{i j}} \cdot e^{\iota k_{2} \theta_{i j}}=e^{\iota\left(k_{1}+k_{2}\right) \theta_{i j}}
$$

- In phase synchronization, this amounts to comparing 1 with

$$
\left|W_{i j}^{\left(k_{1}\right)} W_{i j}^{\left(k_{2}\right)} \overline{W_{i j}^{\left(k_{1}+k_{2}\right)}}\right| \text { for each pair }(i, j)
$$

- In general, with the help of Clebsch-Gordan coefficients $C_{k_{1}, k_{2}}$, compare the following with the identity matrix $I_{d_{1} d_{2}}$:

$$
\left[F_{i j}^{\left(k_{1}\right)} \bigotimes F_{i j}^{\left(k_{2}\right)}\right] C_{k_{1}, k_{2}}\left[\bigoplus_{k \in k_{1} \otimes k_{2}} F_{i j}^{(k)}\right] C_{k_{1}, k_{2}}^{*}
$$

where $F_{i j}^{\left(k_{1}\right)}, F_{i j}^{\left(k_{2}\right)}, F_{i j}^{(k)}$ estimate $\rho_{k_{1}}\left(g_{i j}\right), \rho_{k_{2}}\left(g_{i j}\right), \rho_{k}\left(g_{i j}\right)$

- Can use this to construct invariant moment features of arbitrary order; more details in (Fan-G.-Zhao 2019)

Detour: A Variant of Community Detection

Open Problems

- Algorithm works for $\mathrm{SO}(3)$ seamlessly, but theory?
- Possible extension to other synchronization and multireference alignment problems over compact/noncompact Lie groups?
- Fundamental statistical/computational limits in the community detection setting?
- Mult-frequency vector diffusion maps?
- A learning paradigm on sheaves?

Thank You!

- AMS-Simons Travel Grant
- UChicago CDAC Data Science Discovery Seed Grant - NSF CDS\&E-MSS DMS-1854831

Center for Data and Computing

- Tingran Gao and Zhizhen Zhao, Multi-Frequency Phase Synchronization. Proceedings of the 36th International Conference on Machine Learning (ICML 2019), PMLR 97:2132-2141, 2019.
- Tingran Gao, Yifeng Fan, and Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class

Averaging for Three-Dimensional Cryo-Electron Microscopy, arxiv:1906.01082.

- Yifeng Fan, Tingran Gao, and Zhizhen Zhao, Unsupervised Co-Learning on \mathcal{G}-Manifolds Across Irreducible Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), arxiv:1906.02707

