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Representation?

GTM129 Robert Delaunay (1885–1941) Word2Vec
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Graph: A Flexible Data Representation
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Non-Scalar Edge Weights

dcP (Si , Sj) = inf
C∈A(Si ,Sj)

inf
R∈E(3)

(∫
Si

‖R (x)− C (x) ‖2 dvolSi (x)

) 1
2

dij
−−−→

fij
Si Sj
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Do Graph Representations Have Enough Expressive Power?
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Cryo-Electron Microscopy

• Singer et al. “Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors”, SIAM
Journal on Imaging Sciences, 4 (2), pp. 543–572 (2011).
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Cryo-Electron Microscopy: Real Challenge is Low SNR

Apply Class Averaging to improve SNR!

I For each image, identify nearest neighbors in terms of
similar viewing directions

I Average out the image with the identified neighbor
images (with respect to the correct pairwise rotations)

• Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II – The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589–616 (2011).
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Phase Synchronization

I Problem: Recover rotation
angles θ1, . . . , θn ∈ [0, 2π]
from noisy measurements
of their pairwise offsets

θij ≡ θi − θj + noise

for some or all pairs of (i , j)

I Examples: Class averaging
in cryo-EM image analysis,
shape registration and
community detection
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Phase Synchronization (Notation: Cn
1 := [U(1)]n)

I Setup: Phase vector z =
(
eιθ1 , . . . , eιθn

)> ∈ Cn
1, noisy

pairwise measurements in n-by-n Hermitian matrix

Hij =

{
eι(θi−θj) = zi z̄j with prob. r ∈ [0, 1]

Uniform (U(1)) with prob. 1− r

and Hij = Hji . This is known as a random corruption model.

I Goal: Recover the true phase vector z (up to a global
multiplicative factor)

I Existing method: Rank-1 recovery (e.g. convex relaxations)

x̂ := arg min
x∈Cn

1

‖xx∗ − H‖2
F ⇔ x̂ := arg max

x∈Cn
1

x∗Hx
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Hij =

{
eι(θi−θj) = zi z̄j with prob. r ∈ [0, 1]

Uniform (U(1)) with prob. 1− r

and Hij = Hji . This is known as a random corruption model.

I Goal: Recover the true phase vector z (up to a global
multiplicative factor)

I Spectral Relaxation: solve for the top eigenvector of H,
denoted as x̃ (scaled to ‖x̃‖2 =

√
n), then define x̂ ∈ Cn

1 by

x̂i := x̃i/ |x̃i |
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Multi-Frequency Phase Synchronization: Main Idea

I The rank-1 recovery formulation
x̂ := arg min

x∈Cn
1

‖xx∗ − H‖2
F ⇔ x̂ := arg max

x∈Cn
1

x∗Hx

does not fully exploit that entries of x and H are phases!

I Key Observation: Raising a phase to any power yields
another phase! eιθ 7−→ eιkθ, k = 1, 2, . . .

I Solve a family of coupled matrix factorization problems jointly

x̂ (k) := arg max
x∈Cn

1

(xk)∗H(k)xk , k = 1, 2, . . . , kmax

where xk :=
(
xk1 , . . . , x

k
n

)> ∈ Cn
1, and H(k) is the n-by-n

Hermitian matrix with H
(k)
ij := Hk

ij , and then “stitch up” the

individual estimates x̂ (1), . . . , x̂ (kmax) to recover x̂

I The “stitching” step strives to recover eιθ from noisy
measurements of eιθ, . . . , eιkmaxθ, which is a version of
harmonic retrieval
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Multi-Frequency Phase Synchronization

I Multi-Frequency Formulation:

max
x∈Cn

1

kmax∑
k=1

(xk)∗H(k)xk

where xk :=
(
xk1 , . . . , x

k
n

)> ∈ Cn
1, and H(k) is the n-by-n

Hermitian matrix with H
(k)
ij := Hk

ij

I Intuition: Matching higher trigonometric moments

I Two-stage Algorithm: (i) Good initialization (ii) Local
methods e.g. gradient descent or (generalized) power iteration
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Initialization: Inspired by Harmonic Retrieval
I Fix kmax ≥ 1, build H(2), . . . ,H(kmax) out of H = H(1) by

taking entrywise powers of H

I For each k = 1, . . . , kmax, find a reasonably good symmetric
rank-1 approximation

W (k) := arg max
Y=Y>

rank(Y )=1

∥∥∥H(k) − Y
∥∥∥2

F

using e.g. spectral method
I For all 1 ≤ i , j ≤ n, find the “peak location” of the

spectrogram

θ̂ij := arg max
φ∈[0,2π]

∣∣∣∣∣∣12
kmax∑

k=−kmax

W
(k)
ij e−ιkφ

∣∣∣∣∣∣
I Apply the spectral method yet again to the Hermitian matrix

Ĥ to get x̂ ∈ Cn
1, where Ĥij = eιθ̂ij
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How well does it work? Evaluate correlation |Corr (x̂ , z)|

Random Corruption Model, r = λ/
√
n

Our Method: |Corr (x̂, z)| −→ 1

as kmax � 1, even for λ < 1!

Previous Art: Only ensures

|Corr (x̂, z)| > 1√
n

for λ > 1
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New Theory: Strong Recovery

Theorem (G.–Zhao 2019). Under (mild) assumptions, with high
probability, the multi-frequency phase synchronization algorithm
produces an estimate x̂ satisfying

|Corr (x̂ , z)| ≥ 1− C ′

k2
max

provided that

kmax > max

{
5,

1√
2π − 2− 4

√
2πC2σ

√
log n/n

}
.

In particular, |Corr (x̂ , z)| → 1 as kmax →∞.
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Why does it work?

I By a perturbation analysis, after solving each subproblem

W (k) := arg max
Y=Y>

rank(Y )=1

∥∥∥H(k) − Y
∥∥∥2

F

we expect W (k) = zk(zk)∗ + E (k) ≈ zk(zk)∗, where zi = eιθi

I The peak finding step is expected to ensure

θ̂ij = arg max
φ∈[0,2π]

∣∣∣∣∣12
kmax∑
k=1

W
(k)
ij e−ιkφ

∣∣∣∣∣
≈ arg max

φ∈[0,2π]

∣∣∣∣∣12
kmax∑
k=1

eιk(θi−θj)e−ιkφ

∣∣∣∣∣ = θi − θj

provided that E (k) does not “perturb away” the maximum!
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Landscape Analysis of the Dirichlet Kernel

kmax∑
k=−kmax

W
(k)
ij e−ιkφ

=
kmax∑

k=−kmax

eιk(θi−θj)e−ιkφ +
kmax∑

k=−kmax

E
(k)
ij e−ιkφ

=

sin

[(
kmax +

1

2

)
(θi − θj − φ)

]
sin

[
1

2
(θi − θj − φ)

] +
kmax∑

k=−kmax

E
(k)
ij e−ιkφ

=: Dirkmax (φ− (θi − θj)) + Rkmax (φ)
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A Proof by Picture (Notation: ∆θij := θ̂ij − (θi − θj))

Key Observation: |∆θij | ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

0

2

4

6

8

10

12
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A Proof by Picture (Notation: ∆θij := θ̂ij − (θi − θj))

Key Observation: |∆θij | ≤ θ∗ < 4π
2kmax+1 whenever

2kmax + 1− ‖Rkmax‖∞ >
1

sin (θ∗/2)
+ ‖Rkmax‖∞

⇐ 2kmax − ‖Rkmax‖∞ >
1

sin
(

π
2kmax+1

) + ‖Rkmax‖∞

⇐ 1− 1

2kmax sin
(

π
2kmax+1

) > 1

kmax
‖Rkmax‖∞ ∼

∥∥∥E (k)
ij

∥∥∥
∞

What are the odds?
Can be estimated with a uniform upper bound for the E

(k)
ij ’s!
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Eigenvector perturbation analysis in `∞-norm!

I Standard perturbation bounds use `2-norm (e.g.
Davis–Kahan), but most application scenarios of spectral
methods require bounding the `∞-norm

I Active research area in recent years, e.g. [Eldridge et al.
(2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)];
[Zhong & Boumal (2018)]

I Sharpest results to date use a “leave-one-out” trick
popularized by statisticians

Lemma (G.–Zhao 2019). For any 0 < ε ≤ 2, with probability at
least 1− O

(
n−(2+ε)

)
, there exists absolute constant C2 > 0 s.t.

∥∥∥E (k)
ij

∥∥∥
∞
≤ C2σ

√
log n

n
.
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Putting Everything Together, with a Union Bound

With high probability, uniformly for all i , j ∈ [n], θ̂ij is close to the
true offset θi − θj as long as

1− 1

2kmax sin
(

π
2kmax+1

) ≥ ∥∥∥E (k)
ij

∥∥∥
∞

⇐ 1− 1

2kmax sin
(

π
2kmax+1

) > C2σ

√
log n

n

⇐ kmax > max

{
5,

1√
2π − 2− 4

√
2πC2σ

√
log n/n

}
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New Theory: Strong Recovery

Theorem (G.–Zhao 2019). Under (mild) assumptions, with high
probability, the multi-frequency phase synchronization algorithm
produces an estimate x̂ satisfying

|Corr (x̂ , z)| ≥ 1− C ′

k2
max

provided that

kmax > max

{
5,

1√
2π − 2− 4

√
2πC2σ

√
log n/n

}
.

In particular, |Corr (x̂ , z)| → 1 as kmax →∞.
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Detour: Multi-Frequency Synchronization over SO(3)

Peter–Weyl: f (g) =
∞∑
k=0

dkTr
[
f̂ (k) ρk (g)

]
, ∀f ∈ L2 (SO(3))

I Random corruption model:

gij =

{
gig
−1
j with probability r

Unif (SO(3)) with probability 1− r

I Use spectral methods to estimate ρ1 (gij) , . . . , ρkmax (gij),

denote Ĥ
(k)
ij for the estimator of ρk (gij)

I Solve a generalized harmonic retrieval problem on SO(3):

ĝij = arg max
g∈SO(3)

kmax∑
k=1

dkTr
[
Ĥ

(k)
ij ρ∗k (g)

]
I Works fantastic in practice, but no theory yet!
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Class Averaging

I Compute the rotation-invariant distance between all pairs of
images dRID (Ii , Ij) := minα∈[0,2π] ‖Ii − eιαIj‖F, and denote αij

for the optimal alignment angle

I Fix threshold ε > 0 and define Hermitian W ∈ Cn×n by

Wij :=

{
exp (ιαij) if dRID (Ii , Ij) < ε

0 otherwise

I Solve for the top 3 eigenvectors ψ1, ψ2, ψ3 of W , which
embeds I1, I2, . . . into C3 by

Ii 7−→ Ψ (Ii ) :=
(ψ1 (i) , ψ2 (i) , ψ3 (i))

‖(ψ1 (i) , ψ2 (i) , ψ3 (i))‖

I Use correlation in the embedded C3 space to determine the
closeness between viewing directions
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embeds I1, I2, . . . into C3 by

Ii 7−→ Ψ (Ii ) :=
(ψ1 (i) , ψ2 (i) , ψ3 (i))

‖(ψ1 (i) , ψ2 (i) , ψ3 (i))‖

I Use correlation in the embedded C3 space to determine the
closeness between viewing directions
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Multi-Frequency Class Averaging

I Compute the rotation-invariant distance between all pairs of
images dRID (Ii , Ij) := minα∈[0,2π] ‖Ii − eιαIj‖F, and denote αij

for the optimal alignment angle

I Fix threshold ε > 0 and define Hermitian W ∈ Cn×n by

W
(k)
ij :=

{
exp (ιkαij) if dRID (Ii , Ij) < ε

0 otherwise

I Solve for the top 2k + 1 eigenvectors ψ
(k)
1 , · · · , ψ(k)

2k+1 of

W (k), which embeds I1, I2, . . . into C2k+1 by

Ii 7−→ Ψ(k) (Ii ) :=
(ψ1 (i) , . . . , ψ2k+1 (i))

‖(ψ1 (i) , . . . , ψ2k+1 (i))‖

I Use all correlations in the embedded C2k+1 (k = 1, . . . , kmax)
spaces to determine the closeness between viewing directions
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Why 2k + 1? Some Representation Theoretic Patterns

I (G., Fan, Zhao 2019) For sufficiently large sample size n
and appropriately small ε > 0, the top eigenspace of W (k) is
(2k + 1)-dimensional, and the spectral gap grows linearly in k :

λ
(k)
k − λ

(k)
k+1 ∼

1 + k

4
ε2

I Larger k ⇒ larger spectral gap ⇒ better numerical stability!

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
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More Representation Theoretic Patterns......

I (G.–Fan–Zhao 2019) The viewing angle θij between image i
and image j satisfies∣∣∣〈Ψ(k) (Ii ) ,Ψ

(k) (Ij)
〉∣∣∣ =

(
1 + cos θij

2

)k

I Larger k ⇒ easier thresholding

I Can also jointly use k = 1, · · · , kmax to construct polynomial
filters for cos θij

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
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Multi-Frequency Information Improves Class Averaging

Histograms of true viewing angles between each image and its 50
nearest neighboring images
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Multi-Frequency Information Improves Class Averaging

• Yifeng Fan & Zhizhen Zhao. Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion
Maps. arXiv:1904.07772.
• Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
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Outline

Motivation

I Class Averaging and Phase Synchronization

Multi-Frequency Phase Synchronization

I A Multi-Frequency Formulation

I A Proof by Picture

Multi-Frequency Class Averaging

I Some Representation Theoretic Patterns

From a Fibre Bundle Point of View

Joint work with Yifeng Fan (UIUC) & Zhizhen Zhao (UIUC)



Synchronization Problems
I Data:

I graph Γ = (V ,E )
I topological group G , equipped with a norm ‖·‖, and a

G -module F
I edge potential g : E → G satisfying gij = g−1

ji , ∀ (i , j) ∈ E

I Goal:
I find a vertex potential f : V → G or F such that

fi = gij fj , ∀ (i , j) ∈ E

I The goal can be achieved if and only if gij = fi f
−1
j

I Not always feasible!
I If infeasible, find the “closest solution” in the sense of

min
f :V→G
‖f ‖6=0

1

2

∑
i ,j∈V

‖fi − gij fj‖2

∑
i∈V
‖fi‖2

(=: η (f ))
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Geometric Picture

I Data:
I graph Γ = (V ,E )
I topological group G , equipped with a norm ‖·‖, and a

G -module F
I edge potential g : E → G satisfying gij = g−1

ji , ∀ (i , j) ∈ E

I Flat Principal G -Bundle:
I Let U = {Ui | 1 ≤ i ≤ |V |} be an open cover of Γ (viewed as a

1-dimensional simplicial complex), where Ui is the (open) star
neighborhood of vertex i .

I Triplet (g ,G , Γ) defines a flat principal G-bundle Bρ over Γ
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Fibre Bundle: E = (E ,M,F , π) is called a F -bundle over M if

I M: base manifold

I F : fibre manifold

I E : total manifold

I π : E → M: smooth surjective map (bundle projection)

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F
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Theorem (Steenrod 1951, §2).
If Lie group G acts on Y ,
U = {Ui} is an open cover of X ,
{gij ∈ G | Ui ∩ Uj 6= ∅} satisfies

gii = e ∈ G for all Ui

gij = g−1
ji if Ui ∩ Uj 6= ∅

gijgjk = gik if Ui ∩ Uj ∩ Uk 6= ∅

then there exists a fibre bundle
B with base space X , fibre Y ,
group G , and bundle
transformations {gij}.
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No triple intersections!

what
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Representation and Associated Bundles

I If M is a principal G -bundle over B, ρ : G → Aut (F ) is a
representation of G over a vector space F . Then ρ induces an
associated F -bundle over B:

M ×ρ F := M × F
/
∼

where the equivalence relation is defined by

(m · g , v) ∼ (m, ρ (g) v)

I Non-equivalent irreducible representations gives rise to distinct
associated bundles
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Multi-Frequency ↔ Multiple Associated Bundles

I All irreducible representations of U(1):
{
θ → eιkθ | k ∈ Z

}
I Entrywise power: Inducing multiple irreducible

representations, effectively creating many associated bundles

I Multi-frequency phase synchronization and class averaging
both strive to distill features across multiple associate bundles
(associated with different principal bundles)
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How Far Can We Push This idea Further?

I Faster ways than arg max Peter–Weyl?

ĝij = arg max
g∈G

kmax∑
k=1

dkTr
[
Ĥ

(k)
ij ρ∗k (g)

]
I Alternative ways to leverage the algebraic consistency across

irreducible representations / associated bundles?
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Bispectrum

I Example: Construct invariant features such as the
bispectrum, using algebraic constraints such as

eιk1θij · eιk2θij = eι(k1+k2)θij

I In phase synchronization, this amounts to comparing 1 with∣∣∣∣W (k1)
ij W

(k2)
ij W

(k1+k2)
ij

∣∣∣∣ for each pair (i , j)

I In general, with the help of Clebsch–Gordan coefficients
Ck1,k2 , compare the following with the identity matrix Id1d2 :

[
F

(k1)
ij

⊗
F

(k2)
ij

]
Ck1,k2

 ⊕
k∈k1

⊗
k2

F
(k)
ij

C ∗k1,k2

where F
(k1)
ij , F

(k2)
ij , F

(k)
ij estimate ρk1 (gij), ρk2 (gij), ρk (gij)

I Can use this to construct invariant moment features of
arbitrary order; more details in (Fan–G.–Zhao 2019)
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Detour: A Variant of Community Detection
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Open Problems

I Algorithm works for SO(3) seamlessly, but theory?

I Possible extension to other synchronization and multireference
alignment problems over compact/noncompact Lie groups?

I Fundamental statistical/computational limits in the
community detection setting?

I Mult-frequency vector diffusion maps?

I A learning paradigm on sheaves?
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Thank You!

I AMS–Simons Travel Grant

I UChicago CDAC Data Science Discovery Seed Grant

I NSF CDS&E-MSS DMS-1854831

• Tingran Gao and Zhizhen Zhao, Multi-Frequency Phase Synchronization. Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), PMLR 97:2132–2141, 2019.
• Tingran Gao, Yifeng Fan, and Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class
Averaging for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
• Yifeng Fan, Tingran Gao, and Zhizhen Zhao, Unsupervised Co-Learning on G-Manifolds Across Irreducible
Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), arxiv:1906.02707

40/40


