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Graph: A Flexible Data Representation
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Non-Scalar Edge Weights

dr(5.5)= _inf  int ([ IR(:)=C(x) | dvols ()

CeA(S;,S;) REE()
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Do Graph Representations Have Enough Expressive Power?

DA
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Cryo-Electron Microscopy

Projection

Molecule @
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o Singer et al. “Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors”, SIAM
Journal on Imaging Sciences, 4 (2), pp. 543-572 (2011).
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Cryo-Electron Microscopy: Real Challenge is Low SNR

Fig. 3 The left most image is a clean simulated projection image of the E.coli 50S ribosomal subunit. The
other three images are real electron microscope images of the same subunit

Apply Class Averaging to improve SNR!
» For each image, identify nearest neighbors in terms of
similar viewing directions

» Average out the image with the identified neighbor
images (with respect to the correct pairwise rotations)

e Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy Il — The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589-616 (2011).
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Phase Synchronization

» Problem: Recover rotation
angles 61,...,6, € [0,27]
from noisy measurements
of their pairwise offsets

0ij = 0; — 0; + noise

for some or all pairs of (i, )
» Examples: Class averaging
in cryo-EM image analysis,
shape registration and
community detection
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Phase Synchronization (Notation: Cf := [U(1)]")

T .
> Setup: Phase vector z = (e'%1,... ") € CJ, noisy
pairwise measurements in n-by-n Hermitian matrix

o e (0-0)) — ziz;  with prob. r € [0, 1]
/ Uniform (U(1)) with prob. 1 —r

and Hj; = Hij, This is known as a random corruption model.

» Goal: Recover the true phase vector z (up to a global
multiplicative factor)

» Existing method: Rank-1 recovery (e.g. convex relaxations)

X = argmin ||xx* — H||12_; & R:=argmaxx™Hx
xeCy x€eCy
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Phase Synchronization (Notation: Cf := [U(1)]")

T .
Setup: Phase vector z = (e'%1,...,e") " € CJ, noisy
pairwise measurements in n-by-n Hermitian matrix

o e (0-0)) — ziz;  with prob. r € [0, 1]
/ Uniform (U(1)) with prob. 1 —r

and Hj; = HT, This is known as a random corruption model.

Goal: Recover the true phase vector z (up to a global
multiplicative factor)

Spectral Relaxation: solve for the top eigenvector of H,
denoted as X (scaled to ||X||, = v/n), then define X € C] by

R = X/ |%i|
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Multi-Frequency Phase Synchronization: Main Idea

» The rank-1 recovery formulation

% :=argmin|xx* — H|Z2 & & :=argmaxx*Hx
xeCf xeCf
does not fully exploit that entries of x and H are phases!
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Multi-Frequency Phase Synchronization: Main Idea

» The rank-1 recovery formulation

X = argmin || xx* — H||% & X:=argmaxx*Hx
xeCf xeCf
does not fully exploit that entries of x and H are phases!

» Key Observation: Raising a phase to any power yields
another phase!l e —s etk k=12 ...
» Solve a family of coupled matrix factorization problems jointly

)= arg max (xk)*H(k)xk, k=1,2,..., kmax
xeCy

T .
where x¥ := (xf, . ,x,’,‘) € C{, and H) is the n-by-n
Hermitian matrix with H,.(jk) = H,f and then “stitch up” the
individual estimates (1), ..., Rkmax) to recover £

» The “stitching” step strives to recover '/ from noisy
measurements of e'?, ... etkmaxf which is a version of
harmonic retrieval
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Multi-Frequency Phase Synchronization

» Multi-Frequency Formulation:

kmax

max Z (xk)HU K

xeCy —1

where x* := (xf, ... ,x,’f)T € CJ, and H®) is the n-by-n
Hermitian matrix with H,.S-k) = H§

> Intuition: Matching higher trigonometric moments

» Two-stage Algorithm: (i) Good initialization (ii) Local
methods e.g. gradient descent or (generalized) power iteration
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Initialization: Inspired by Harmonic Retrieval

> Fix kmax > 1, build H®) ... Hkmax) out of H = H( by
taking entrywise powers of H
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using e.g. spectral method
» Forall 1 <i,j < n, find the “peak location” of the

spectrogram

k
~ 1 max
0jj == argmax |- Z V\/,-J(-k)e_Lk‘z’
#€[0,27] k=— Ko

12/40



Initialization: Inspired by Harmonic Retrieval

> Fix kmax > 1, build H®) ... Hkmax) out of H = H( by
taking entrywise powers of H

» For each k =1,..., kpax, find a reasonably good symmetric
rank-1 approximation

2
w .= arg max HH(k) — YH
y=yT F

rank(Y)=1

using e.g. spectral method
» Forall 1 <i,j < n, find the “peak location” of the
spectrogram

kmax

~ 1
0jj == argmax |- Z V\/,-J(-k)e_Lk‘z’
$€[0,2n] k=— Ko

> Apply the spectral method yet again to the Hermitian matrix
H to get £ € CJ, where H,J = et

12/40



How well does it work? Evaluate correlation |Corr (X, z)|

Random Corruption Model, r = \/+/n
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Our Method: |Corr (%,z)] — 1 Previous Art: Only ensures

o 1
as kmax > 1, even for A\ < 1! |Corr (%, )| > NG for A >1
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New Theory: Strong Recovery

Theorem (G.—Zhao 2019). Under (mild) assumptions, with high
probability, the multi-frequency phase synchronization algorithm
produces an estimate X satisfying

C/
k2

max

|Corr (%,z)| > 1 —

provided that

1
Kmax > max< 5, .
* { \@77—2—4\@7TC20«/I0gn/n}

In particular, |Corr (X, z)| — 1 as kpax — 00.
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Why does it work?

» By a perturbation analysis, after solving each subproblem

2
wk .= arg max HH(k) — YH
y=yT F

rank(Y)=1

we expect W) = zk(zK)* 4 E(D) & 7K(2K)*, where z; = eV

» The peak finding step is expected to ensure

kmax

h 1 (k) \—uk
0jj = argmax | - Wi emtko
oelo,2n] |2 kz_; ’
1 km'dX
A arg max | = Z etk(0i=0)) g=tke| 0; — 0;
vefo2n] |2 (2

provided that £(¥) does not “perturb away” the maximum!
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Landscape Analysis of the Dirichlet Kernel

krnax

Z V‘/,_J(_k)e—bkqﬁ

k=—kKmax

kmax kmax

_ Z eLk(e,—ej)ekagz)jL Z El_g_k)eﬁm

k:_kmax k:_kmax
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Landscape Analysis of the Dirichlet Kernel

kmax
Z W (k) o tkd
k—fkmax
kmax kmax
o k(0 —6;) \—1ko (k) \—tke
= > eHteo N7 £
k:_kmax kf_kmax

e e-a-0]
— " B . ¢)] + k_zk:max ke

=: Dirg... (¢ — (0i — 0))) + Ripax (@)
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A Proof by Picture (Notation: Ae,j =0, — (6; — 0)))
Key Observation: |Af;| < 6, < 2k "1 Whenever

1
2k, 1—|IR _— R
max + ” kmax”oo > Sin (9*/2) + ” krnaxHoo

12

——Periodogram « + |Dir,, (z)|, m =5

T

1
101 ‘. o Zero locus 2ml/ (2m +1),£=1,---,2m
- - Envelope z — 1/sin (z/2)
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A Proof by Picture (Notation: A8; := 6 — (6; — 6)))

Key Observation: |Af;| < 6, < 2k —1 Whenever

;
sin (6, /2)

2kmax + ]- - “kaaXHoo > + ”kaaxHOO
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A Proof by Picture (Notation: A@,-j =0, — (0 — )

Key Observation: |Af;| < 6, < 2k 7 whenever
Dimax + 1 — [Rignellos > s+ [[Ri |
max kmax [e'e) Sin (0*/2) kmax o0
2kmax +1 - _
IR Il
IRk ll oo
1
sin(64 /2)
0




A Proof by Picture (Notation: Afj; := 6;; — (6, — 6;))

Key Observation: |Af;| < 6, < 2k 77 whenever

2kmax + 1 - HkaaxH + HkaaxHoo

o1
<~ Sin (6:/2)
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A Proof by Picture (Notation: A8 := 8 — (6; — 6;))

Key Observation: |Af;| < 6, < 2k 77 whenever

1

2kmax + 1 —||R > — R

a + H kmaxHoo sin (0*/2) + H kmaxHoo

< 2kmaX - Hkaax”OO > + ”kaax“OO
sin <2km:x+1)
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A Proof by Picture (Notation: A8 := 8 — (6; — 6;))

Key Observation: |Af;| < 6, < 2k 77 whenever

1

2kmax + 1 —||R > — R
a + H kmaxHoo sin (9*/2) + H kmaxH()O
~ 2kmaX - HkaaxHoo > ) - + ||kaaxHoo
sin <2kmax+1)
1 1 k
“1- > = IRinuclloe ~ [ E5°)

. m k
2Kkmax SIN <2kmax+1> max

What are the odds?
Can be estimated with a uniform upper bound for the E,.j

(k)lsl
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Eigenvector perturbation analysis in £,.-norm!

» Standard perturbation bounds use f»-norm (e.g.
Davis—Kahan), but most application scenarios of spectral
methods require bounding the £,,-norm

» Active research area in recent years, e.g. [Eldridge et al.
(2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)];
[Zhong & Boumal (2018)]

» Sharpest results to date use a “leave-one-out” trick
popularized by statisticians

Lemma (G.—Zhao 2019). For any 0 < € < 2, with probability at
least 1 — O (n_(2+e)), there exists absolute constant C; > 0 s.t.

|

log n
< Go & .

). ;

Iy
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Putting Everything Together, with a Union Bound

With high probability, uniformly for all i, € [n], éij is close to the
true offset 0; — ¢; as long as

1

- o)
2hina sin (77 ) 0
1 |
= 1- > Goo o n
2Kmax SiN (72km:x+1) n

1
< Kmax > max<{ b,
{ \@W—2—4ﬁ7rC2m/logn/n}
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New Theory: Strong Recovery

Theorem (G.—Zhao 2019). Under (mild) assumptions, with high
probability, the multi-frequency phase synchronization algorithm
produces an estimate X satisfying

C/
k2

max

|Corr (%,z)| > 1 —

provided that

1
Kmax > max< 5, .
* { \@77—2—4\@7TC20«/I0gn/n}

In particular, |Corr (X, z)| — 1 as kpax — 00.
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Detour: Multi-Frequency Synchronization over SO(3)

Peter-Weyl: f(g) = Z diTr {f(k) Pk (g)] , Vf € [2(SO(3))
k=0
» Random corruption model:

o gigf1 with probability r
8= Unif (SO(3)) with probability 1 — r

> Use spectral methods to estimate p1 (gjj) ;- - -, Phumax (&if),
denote ﬁl.(jk) for the estimator of pi (gij)
» Solve a generalized harmonic retrieval problem on SO(3):
Kmax
gjj = arg max Z diTr {ﬁék)p}i (g)]
g€S0(3)

» Works fantastic in practice, but no theory yet!
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Class Averaging

» Compute the rotation-invariant distance between all pairs of
images drip (/i ;) == mingejo 2 [|li — €*lj]|, and denote a;;
for the optimal alignment angle
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Class Averaging

>

Compute the rotation-invariant distance between all pairs of
images drip (/i ;) == mingejo 2 [|li — €*lj]|, and denote a;;
for the optimal alignment angle

Fix threshold ¢ > 0 and define Hermitian W € C"*" by

exp (LO&,'j) if dRID (/,‘, IJ) <€
Wi = .
0 otherwise

Solve for the top 3 eigenvectors 1, 95, 13 of W, which
embeds I, b, ... into C* by

, N (@ (), v2(i),¢3 (i)
= V) = ) i ()0 ()]

Use correlation in the embedded C> space to determine the
closeness between viewing directions
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Multi-Frequency Class Averaging

» Compute the rotation-invariant distance between all pairs of
images drip (/i, }) := minagjo2q) Il — €**ljl|p, and denote
for the optimal alignment angle

» Fix threshold € > 0 and define Hermitian W € C"*" by

i) . J o (the) i du (I ) < ¢
v 0 otherwise

» Solve for the top 2k + 1 eigenvectors 1/J§k), o ,wgi)ﬂ of
W) which embeds h, b, ... into C?<*! by

(W1 (i), ars1 (V)
(21 (0) 5 P2argr ()]

» Use all correlations in the embedded C2**1 (k =1,..., kpax)
spaces to determine the closeness between viewing directions

I — (1) =
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Why 2k + 17 Some Representation Theoretic Patterns

» (G., Fan, Zhao 2019) For sufficiently large sample size n
and appropriately small € > 0, the top eigenspace of W) is
(2k + 1)-dimensional, and the spectral gap grows linearly in k:

Kk k 1+ k
Aﬁ( ) - )\i-gl ~ 4 62

» Larger k = larger spectral gap = better numerical stability!

e Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
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More Representation Theoretic Patterns......

» (G.—Fan—Zhao 2019) The viewing angle ;; between image i
and image j satisfies

ot 100 )| - (L5

> Larger k = easier thresholding

» Can also jointly use k =1, - | knax to construct polynomial
filters for cos0;;

e Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
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Multi-Frequency Information Improves Class Averaging

0.08 0.06
—k=1 / —k=1
—k=3 | \\ —k=3
- k=5 B [ k=5
8 —k=7 g004 —k=7
E MFCA b= || MFCA
8 8 \
2 2
e =
¥ A 0.02 i
I
|
0 == E——
60 120 180 0 60 120 180
acos(m(x;), w(x;)) acos(m(x;), w(x;))

Histograms of true viewing angles between each image and its 50
nearest neighboring images
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Multi-Frequency Information Improves Class Averaging

CWF ASPIRE

o Yifeng Fan & Zhizhen Zhao. Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion
Maps. arXiv:1904.07772.

e Tingran Gao, Yifeng Fan, Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.
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Synchronization Problems

» Data:
» graph [ = (V,E)
» topological group G, equipped with a norm ||-||, and a
G-module F
» edge potential g : £ — G satisfying gj; = gji’l7 V(i,j)eE
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» topological group G, equipped with a norm ||-||, and a
G-module F
» edge potential g : £ — G satisfying gj; = gji’l7 V(i,j)eE
» Goal:

» find a vertex potential f : V — G or F such that
f;':gi'fj_'v V(’vJ)EE

» The goal can be achieved if and only if gj; = m;'_l
> Not always feasible!
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Synchronization Problems

» Data:
» graph [ = (V,E)
» topological group G, equipped with a norm ||-||, and a
G-module F
» edge potential g : £ — G satisfying gj; = gji’l7 V(i,j)eE
» Goal:

» find a vertex potential f : V — G or F such that

f;':gi'fj_'v V(’vJ)EE

v

The goal can be achieved if and only if gj; = m;'_l

v

Not always feasible!

v

If infeasible, find the “closest solution” in the sense of
2
> If - gifil
lijev

min
: 2
s 2 DN

ieVv

(=:n(f))
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Geometric Picture

» Data:
» graph ' = (V,E)
» topological group G, equipped with a norm ||-||, and a
G-module F
> edge potential g : E — G satisfying gj = g; ', V(i,j) € E
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Geometric Picture

» Data:
» graph ' = (V,E)
» topological group G, equipped with a norm ||-||, and a
G-module F

> edge potential g : E — G satisfying gj = g; ', V(i,j) € E
» Flat Principal G-Bundle:
» Let 4= {U; |1<i<|V]|} be an open cover of I (viewed as a

1-dimensional simplicial complex), where U; is the (open) star
neighborhood of vertex i.

U,

» Triplet (g, G,T") defines a flat principal G-bundle %, over I

30/40



(E,M, F,x) is called a F-bundle over M if

» M: base manifold
» F: fibre manifold

Fibre Bundle: &

» E: total manifold

)
is

» 7 : E — M: smooth surjective map (bundle projection

(V)

17T_

> local triviality: for “small” open set U C M

diffeomorphic to U x F

fﬁ?ﬁ?g
RN
JURAA
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PRINCETON LANDHARKS Theorem (Steenrod 1951, §2).

I MATHEMATICS

If Lie group G acts on Y,
= {U;} is an open cover of X,
{gj € G| UinU; # 0} satisfies

gi=e€ G forall U
gij = g;};-l it UinU; # 0

[he Topology gig — g it Ui\ U N Uy # 0
of Fibre Bundles

then there exists a fibre bundle
% with base space X, fibre Y,
group G, and bundle
transformations {gj;}.
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No triple intersections!

Theorem (Steenrod 1951, §2).

If Lie group G acts on Y,

= {U;} is an open cover of X,

{gj € G| UinU; # 0} satisfies
gi=ee G forall U
gU:gj,Tl if UinU; #10

1 TN =W TN TRV}

then there exists a fibre bundle
% with base space X, fibre Y,
group G, and bundle
transformations {gj;}.
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Representation and Associated Bundles

» If M is a principal G-bundle over B, p: G — Aut(F) is a
representation of G over a vector space F. Then p induces an
associated F-bundle over B:

Mx,Fi=MxF [~
where the equivalence relation is defined by
(m-g,v)~(m,p(g)v)

» Non-equivalent irreducible representations gives rise to distinct
associated bundles
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Multi-Frequency <> Multiple Associated Bundles

» All irreducible representations of U(1): {6 — e | k € Z}

» Entrywise power: Inducing multiple irreducible
representations, effectively creating many associated bundles

» Multi-frequency phase synchronization and class averaging
both strive to distill features across multiple associate bundles
(associated with different principal bundles)
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How Far Can We Push This idea Further?

» Faster ways than arg max Peter-Weyl?
kmax
gjj = arg max Z di Tr [H( )t (g)]
8EC 1

» Alternative ways to leverage the algebraic consistency across
irreducible representations / associated bundles?
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Bispectrum

» Example: Construct invariant features such as the
bispectrum, using algebraic constraints such as

eLk10U . eLk29 L(k]_+k2)9,‘j

ij:e
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Bispectrum

» Example: Construct invariant features such as the
bispectrum, using algebraic constraints such as
eLIqGU . eak29,-j — eL(kl+k2)0U
» In phase synchronization, this amounts to comparing 1 with

M/I.J(.kl)Vl/l.J(.k2)V\/l.J(.kl+k2) for each pair (i,J)
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Bispectrum

» Example: Construct invariant features such as the
bispectrum, using algebraic constraints such as

eLk10U . Lk29U _ eL(k1+k2)0ij

» In phase synchronization, this amounts to comparing 1 with

'M/IJ(.kl)Vl/ij(.b)V\/ij(.kﬁkZ) for each pair (i,J)

> In general, with the help of Clebsch—Gordan coefficients
Cii,kp» compare the following with the identity matrix /y, 4,

[ (k1)®FUk2 ] Ceoto @ Fé_k) o

keky ® ko

where F(kl) F(kz) F( ) estimate Pk (8if), P, (&i): Pk (&)
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Bispectrum

>

Example: Construct invariant features such as the
bispectrum, using algebraic constraints such as

eLklel‘j . Lk29U _ eL(k1+k2)0ij

In phase synchronization, this amounts to comparing 1 with

'M/IJ(.kl)Vl/ij(.kz)V\/iJ(.kﬁkZ) for each pair (i,J)

In general, with the help of Clebsch—Gordan coefficients
Cii,kp» compare the following with the identity matrix /y, 4,

[ (k1)®FUk2 ] Ceoto @ Fé_k) o

keky ® ko

where F(kl) F(kz) F( ) estimate Pk (8if), P, (&i): Pk (&)

Can use thls to construct invariant moment features of
arbitrary order; more details in (Fan—G.—Zhao 2019)
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Detour: A Variant of Community Detection

1 (a) Spectral Gap = 0.22 . (b) Frustration for Initialized Vertex Potential = 1057.54 1
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Open Problems

» Algorithm works for SO(3) seamlessly, but theory?

» Possible extension to other synchronization and multireference
alignment problems over compact/noncompact Lie groups?

» Fundamental statistical/computational limits in the
community detection setting?

» Mult-frequency vector diffusion maps?

v

A learning paradigm on sheaves?
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Thank You!

» AMS-Simons Travel Grant
» UChicago CDAC Data Science Discovery Seed Grant
» NSF CDS&E-MSS DMS-1854831

Center for Data and Computing

e Tingran Gao and Zhizhen Zhao, Multi-Frequency Phase Synchronization. Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), PMLR 97:2132-2141, 2019.

e Tingran Gao, Yifeng Fan, and Zhizhen Zhao. Representation Theoretic Patterns in Multi-Frequency Class
Averaging for Three-Dimensional Cryo-Electron Microscopy. arxiv:1906.01082.

e Yifeng Fan, Tingran Gao, and Zhizhen Zhao, Unsupervised Co-Learning on G-Manifolds Across Irreducible
Representations. 33rd Conference on Neural Information Processing Systems (NeurlPS 2019), arxiv:1906.02707
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