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Graph-Based Data Analysis



Non-Scalar Edge Weights

dcP (Si , Sj) = inf
C∈A(Si ,Sj)

inf
R∈E(3)

(∫
Si

‖R (x)− C (x) ‖2 dvolSi (x)

) 1
2

dij
−−−→

fij
Si Sj





Cryo-Electron Microscopy

• Singer et al. “Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors”, SIAM
Journal on Imaging Sciences, 4 (2), pp. 543–572 (2011).



Cryo-Electron Microscopy: Real Challenge is Low SNR

It is imperative to apply class averaging in preprocessing!

• Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II – The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589–616 (2011).



Synchronization Problems
I Data:

I graph Γ = (V ,E )
I topological group G , equipped with a norm ‖·‖, and a

G -module F
I edge potential ρ : E → G satisfying ρij = ρ−1

ji , ∀ (i , j) ∈ E

I Goal:
I find a vertex potential f : V → G or F such that

fi = ρij fj , ∀ (i , j) ∈ E

I The goal can be achieved if and only if ρij = fi f
−1
j

I Not always feasible!

I If infeasible, find the “closest solution” in the sense of

min
f :V→G
‖f ‖6=0

1

2

∑
i ,j∈V

‖fi − ρij fj‖2

∑
i∈V
‖fi‖2

(=: η (f ))
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Phase Synchronization

I Problem: Recover rotation
angles θ1, . . . , θn ∈ [0, 2π]
from noisy measurements
of their pairwise offsets

θij = θi − θj + noise

for some or all pairs of (i , j)

I Examples: Class averaging
in cryo-EM image analysis,
shape registration and
community detection



Phase Synchronization

I Setup: Phase vector z =
(
eιθ1 , . . . , eιθn

)> ∈ Cn
1, noisy

pairwise measurements in n-by-n Hermitian matrix

Hij =

{
eι(θi−θj) = zi z̄j with prob. r ∈ [0, 1]

Uniform (C1) with prob. 1− r

and Hij = Hji . This is known as a random corruption model.

I Goal: recover the true phase vector z (up to a global
multiplicative factor)

I Existing method: Rank-1 recovery (e.g. convex relaxations)

x̂ := arg min
x∈Cn

1

‖xx∗ − H‖2
F ⇔ x̂ := arg max

x∈Cn
1

x∗Hx



Phase Synchronization

I Setup: Phase vector z =
(
eιθ1 , . . . , eιθn

)> ∈ Cn
1, noisy

pairwise measurements in n-by-n Hermitian matrix

Hij =

{
eι(θi−θj) = zi z̄j with prob. r ∈ [0, 1]

Uniform (C1) with prob. 1− r

and Hij = Hji . This is known as a random corruption model.

I Goal: recover the true phase vector z (up to a global
multiplicative factor)

I Spectral Relaxation: solve for the top eigenvector of H,
denoted as x̃ (scaled to ‖x̃‖2 =

√
n), then define x̂ ∈ Cn

1 by

x̂i := x̃i/ |x̃i |
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Multi-Frequency Phase Synchronization

I Multi-Frequency Formulation:

max
x∈Cn

1

kmax∑
k=1

(xk)∗H(k)xk

where xk :=
(
xk1 , . . . , x

k
n

)> ∈ Cn
1, and H(k) is the n-by-n

Hermitian matrix with H
(k)
ij := Hk

ij

I Intuition: Matching higher trigonometric moments

I Two-stage Algorithm: (i) Good initialization (ii) Local
methods e.g. gradient descent or (generalized) power iteration



Initialization: Inspired by Harmonic Retrieval

I Fix kmax ≥ 1, build H(2), . . . ,H(kmax) out of H = H(1)

I For each k = 1, . . . , kmax, solve the subproblem

u(k) := arg max
v∈Cn

1

v∗H(k)v

using any convex relaxation, and set W (k) := u(k)
(
u(k)

)∗
I For all 1 ≤ i , j ≤ n, find the “peak location” of the

spectrogram

θ̂ij := arg max
φ∈[0,2π]

∣∣∣∣∣∣12
kmax∑

k=−kmax

W
(k)
ij e−ιkφ

∣∣∣∣∣∣
I Entrywise normalize the top eigenvector x̃ of Hermitian matrix

Ĥ, defined by Ĥij = eιθ̂ij , to get x̂ ∈ Cn
1
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How well does it work? Evaluate correlation |Corr (x̂ , z)|

Random Corruption Model, r = λ/
√
n

Our Method: |Corr (x̂, z)| −→ 1

as kmax � 1, even for λ < 1!

Previous Art: Only ensures

|Corr (x̂, z)| > 1√
n

for λ > 1
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Noise Models

I Additive Gaussian Noise Model

H = zz∗ + σW

where W is a standard complex Wigner matrix with i.i.d.
standard complex Gaussian entries above the diagonal

I Random Corruption Model

Hij =

{
zi z̄j with prob. r ∈ [0, 1]

Uniform (U(1)) with prob. 1− r



Previous Theory — Weak Recovery

min
x∈Cn

1

‖xx∗ − H‖2
F ⇔ max

x∈Cn
1

x∗Hx

I Nonconvex problem, can be attacked using convex (spectral
or SDP) relaxation or nonconvex methods

I For additive Gaussian noise, convex relaxation almost recovers
the ground truth z ∈ Cn

1 with high probability for noise level

up to σ = O
(√

n/ log n
)
[Zhong & Boumal (2018)];

non-rigorous statistical-physics-based methods predict the
same holds up to σ = O

(√
n
)
[Javanmard et al. (2016)]

I For random corruption model, [Singer (2011)] argues that
|Corr (x̃ , z)| > 1/

√
n with high probability if r > 1/

√
n



Theory Now — Strong Recovery

Theorem (Gao & Zhao 2019). With all (mild) assumptions
satisfied, with high probability the multi-frequency phase
synchronization algorithm produces an estimate x̂ satisfying

Corr (x̂ , z) ≥ 1− C ′

k2
max

provided that

kmax > max

5,
1

√
2π
(

1− 4C2σ
√

log n/n
)
− 2

 .

In particular, Corr (x̂ , z)→ 1 as kmax →∞.

• Tingran Gao and Zhizhen Zhao, “Multi-Frequency Phase Synchronization.” Proceedings of the 36th
International Conference on Machine Learning, PMLR 97:2132–2141, 2019.
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Class Averaging

I Goal: Classify cryo-EM images I1, I2, . . . according to their
viewing directions

I Procedure:
I Compute the rotation-invariant distance between all pairs of

images dRID (Ii , Ij) := minα∈[0,2π] ‖Ii − eιαIj‖F, and denote αij

for the optimal alignment angle
I Fix threshold ε > 0 and define Hermitian W ∈ Cn×n by

Wij :=

{
exp (ιαij) if dRID (Ii , Ij) < ε

0 otherwise

I Solve for the top 3 eigenvectors ψ1, ψ2, ψ3 of W , which
embeds I1, I2, . . . into R3

I Use correlation in the embedded R3 space to determine the
closeness between viewing directions

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint. arxiv:1906.01082.
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for the optimal alignment angle
I Fix threshold ε > 0 and define Hermitian W ∈ Cn×n by

W
(k)
ij :=

{
exp (ιkαij) if dRID (Ii , Ij) < ε

0 otherwise

I Solve for the top 2k + 1 eigenvectors ψ
(k)
1 , · · · , ψ(k)

2k+1 of W (k),

which embeds I1, I2, . . . into R2k+1

I Use all correlations in the embedded R2k+1 (k = 1, . . . , kmax)
spaces to determine the closeness between viewing directions

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint. arxiv:1906.01082.



Why 2k + 1? Some Representation Theoretic Patterns

I (G., Fan, Zhao 2019) For sufficiently large sample size n
and appropriately small ε > 0, the top eigenspace of W (k) is
(2k + 1)-dimensional, and the spectral gap grows linearly in k :

λ
(k)
k − λ

(k)
k+1 ∼

1 + k

4
ε2

I Larger k ⇒ larger spectral gap ⇒ better numerical stability!

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint. arxiv:1906.01082.



More Representation Theoretic Patterns......

I (G., Fan, Zhao 2019) The viewing angle θij between image i
and image j satisfies∣∣∣∣∣

2k+1∑
`=1

ψ
(k)
` (i)ψ

(k)
` (j)

∣∣∣∣∣ =

(
1 + cos θij

2

)k

I Larger k ⇒ easier thresholding

I Can also jointly use k = 1, · · · , kmax to construct polynomial
filters for cos θij

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint. arxiv:1906.01082.



Multi-Frequency Information Improves Class Averaging

• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint. arxiv:1906.01082.



Multi-Frequency Information Improves Class Averaging

• Yifeng Fan & Zhizhen Zhao. “Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion
Maps,” preprint. arXiv:1904.07772.
• Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint. arxiv:1906.01082.



Open Problems

I Landscape and convergence analysis for the Stage 2
algorithm?

I Algorithm works for SO(3) seamlessly, but theory?

I Possible extension to other synchronization and multireference
alignment problems over compact/noncompact Lie groups?

I Mult-frequency vector diffusion maps?

I A learning paradigm on sheaves?



Thank You!

• Tingran Gao and Zhizhen Zhao, “Multi-Frequency Phase Synchronization.” Proceedings of the 36th
International Conference on Machine Learning, PMLR 97:2132–2141, 2019.
• Tingran Gao, Yifeng Fan, and Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class
Averaging for Three-Dimensional Cryo-Electron Microscopy,” arxiv:1906.01082.


