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Graph-Based Data Analysis




Evolutionary Biology

dep (Si,5)) =

inf inf
CeA(S:,S;) REE(3)

(f1re-

) [P dvols (x))







Interpretability Issue
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e Boyer et al. "Algorithms to Automatically Quantify the Geometric Similarity of Anatomical Surfaces.”
Proceedings of the National Academy of Sciences 108.45 (2011): 18221-18226.



Collection Shape Analysis

vol. 32, no. 5, pp. 177-186 (2013).

® Q. Huang & L. Guibas. “Consistent Shape Maps via Semidefinite Programming”, Computer Graphics Forum,

DA



Cryo-Electron Microscopy
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@ Singer et al. “Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors”, SIAM
Journal on Imaging Sciences, 4 (2), pp. 543-572 (2011).



Cryo-Electron Microscopy: Real Challenge is Low SNR

Fig. 3 The left most image is a clean simulated projection image of the E.coli 50S ribosomal subunit. The
other three images are real electron microscope images of the same subunit

e Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy Il — The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589-616 (2011).



Yi=Rix+§;
Ri € O(d), & ~1ii.d. noise

® Afonso S. Bandeira. “Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science.” (2015).
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Recover: Ry, Rp,---




Yi=Rix+&;
Ri € O(d), & ~1ii.d. noise

Measurement: R ~ R R;

Recover: Ry, Rp,---

= Solve the minimization problem
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o A. Nemirovski, “Sums of Random Symmetric Matrices and
Constraints”, Math. Programming, 109 (2007), pp. 283-317.
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Quadratic Optimization Under Orthogonality



Convex Relaxations (1)
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» Spectral Relaxation

min Tr (R(.@ —W) RT>

'RERdXNd
st. RRT=N-lyuy

o Chaudhury et al. "“Global Registration of Multiple Point Clouds using Semidefinite Programming”, SIAM Journal
on Optimization, 25(1):468-501, 2015.



Convex Relaxations (II)

RY
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RN
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min Tr((Z2 —#)G)

GeRNdx Nd
s.t. G~0,G6=¢6"
Gii = lgxd, L< i <N
rank (G) = d

o Chaudhury et al. “Global Registration of Multiple Point Clouds using Semidefinite Programming”, SIAM Journal
on Optimization, 25(1):468-501, 2015.



Convex Relaxations (II)

RY
i T|{(2-#)|:|[R, ,R
L ) 3 [Re v]
RN
st.  R/Ri=-=RyRN=lgxd

» SDP Relaxation

min Tr((Z2 —#)G)

QERNdXNd
s.t. G=0,G= G’
Gi = lgxq, 1<i <N

—reale=o

o Chaudhury et al. “Global Registration of Multiple Point Clouds using Semidefinite Programming”, SIAM Journal
on Optimization, 25(1):468-501, 2015.
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Synchronization Problems

» Data:
» graph ' = (V, E)
» topological group G, equipped with a norm ||-||, and a
G-module F
> edge potential p : E — G satisfying pj = p;;*, V(i,j) € E
» Goal:

» find a vertex potential f : V — G or F such that
fi:pijfj-ﬁ V(i,j)EE

» The goal can be achieved if and only if pj; = ﬁ,;,—l
» Not always feasible!
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G-module F
> edge potential p : E — G satisfying pj = p;;*, V(i,j) € E
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» find a vertex potential f : V — G or F such that

v

The goal can be achieved if and only if p; = ﬁ,;,—l

v

Not always feasible!

v

If infeasible, find the “closest solution” in the sense of

> i = pifill?
. lijev
min == (=:n(f))
s 2 >N

eV




Synchronization Problems: Examples

» Manifold Orientability [singer, wu (2011): G = O (1)

» Angular Synchronization [singer 2011): G = U (1)

» Vector Diffusion Maps singer, wu 2012): G = O (d)

» Multireference Alignment [Bandeira et al. 2019): G = {cyclic shifts}

» Global Registration of Point Clouds [chaudhury (2015): G = E4

> Collection Shape Matching [nguyen et al. (2011)], [Huang, Guibas (2013)], [Chen et
al. (2014)], [Maron et al. (2016)); G = permutation group

» Cryo-EM Structural Reconstruction [singer et al. (2011)], [Shkolnisky, Singer
(2012)], [Zhao, Singer (2014)], [Bandeira et al. (2015)]: G - 50(3)



The Geometry of Synchronization Problems

» Data:
» graph [ = (V,E)
» topological group G, equipped with a norm ||-||, and a
G-module F
» edge potential p : E — G satisfying pj; = pjjl, V(i,j)€eE
» Flat Principal Bundle:
» Let U= {U; |1 <i<|V|} bean open cover of [ (viewed as a
1-dimensional simplicial complex), where U; is the (open) star
neighborhood of vertex i.

U;

» Triplet (p, G,T) defines a flat principal G-bundle 2, over I



PRINCETON LANOMARKS

IN MATHEMATICS

[he Topology
of Fibre Bundles

Theorem (Steenrod 1951, §2).
If topological group G acts on
Y and {U;}, {gjj} is a system of
coordinate transformations in
the space X such that

gi=e€ G forall U
gi=g;' fUNU#0
gigik =8k LU NUNU#D
then there exists a fibre bundle
P with base space X, fibre Y,

group G, and coordinate
transforms {gj; }.



No triple intersections!

Theorem (Steenrod 1951, §2).
If topological group G acts on
Y and {U;}, {gjj} is a system of
coordinate transformations in
the space X such that

gi=ee€ G forall U;
gi=g;  fUNU#D
oo, — . 1f II’. /] N II'. _/ (A

o oyr o

then there exists a fibre bundle
% with base space X, fibre Y,
group G, and coordinate
transforms {g;; }.



Geometric Observations

» Denote
CO(r;G):={f:V = G}
CH(r;6):={p: E—> Gl py=p;'V(ij) € E}

» Consider the right action of C°(I'; G) on C*(T; G):

CH(T;G) x CO°(T; G) — CI(I; G)
(pv f) — Tpf

defined as (7¢p); :== f; 'p;f;, V(i,j) € E. Denote the orbit
space of 7¢ by C*(I; G) /CO(T; G)

» p synchronizable < 7¢p synchronizable for all f € C°(T; G),
i.e. synchronizability is defined up to orbits of 7¢



Moduli Space of Synchronization Data

Theorem (G. et al. 2019). There exists a one-to-one
correspondence (between sets)

ct(r;6)/C°(r; G) 2 Hom(m (1), G) /G
where G acts on Hom (71 (I') , G) by conjugations:

Hom (71 ('), G) x G — Hom (m1 (), G)
(6,8) — g 08

e Tingran Gao, Jacek Brodzki, Sayan Mukherjee. “The Geometry of Synchronization Problems and Learning
Group Actions.” Discrete & Computational Geometry, to appear (2019) arXiv:1610.09051



cl (F; G)/CO (F; G) =~ Hom (7T1 (r) s G)/G

LHS: The first cohomology set H' (T, ), G)
RHS: The representation variety of 71 (I') with value in G
Proof builds upon construction of a holonomy homomorphism

In particular, p € C!(T'; G) synchronizable
& [p] = [e] as equivalence classes in C!(T'; G) /C°(T; G)
& the principal G-bundle %, is trivial



Learning Group Actions by Synchronization

Problem (Learning Group Actions by Synchronization)

Denote %k for all partitions of I into K nonempty connected
components (K < n) and

v(S)= inf Z Vij”ﬂ'_ijka2> VOI(S"):Zdj’
feCo(r;G) . j
J,keS; JESi

Solve the optimization problem
max v (S;)

. 1<i<K
min_ —1(5) (1)
{51, ,Sk}e Xk lgnl_gKvo i

and output an optimal partition {S1,--- , Sk} together with
the minimizing f € C°(T; G).




Algorithm: SynCut

Input: T = (V,E,w), p € CL(I'; G), number of partitions K
Output: Partitions {51, -, Sk}

1.

5.

Solve synchronization problem over I for p, obtain
fe Cor;G)

Compute djj = exp (—W,'j \lfi — puf1”2) on all edges (i,j) € E

Spectral clustering on weighted graph (V, E, d) to get
{517 T, Sk}

Solve synchronization problem within each partition S;, “glue
up” the local solutions to obtain f, € C° (r; G)

f < f, repeat from Step 2

o Tingran Gao, Jacek Brodzki, Sayan Mukherjee. “The Geometry of Synchronization Problems and Learning
Group Actions.” Discrete & Computational Geometry, to appear (2019) arXiv:1610.09051

e Chandrajit Bajaj, Tingran Gao, Zihang He, Qixing Huang, and Zhenxiao Liang. “SMAC: Simultaneous Mapping
and Clustering Using Spectral Decompositions.” Proceedings of the 35th International Conference on Machine
Learning, PMLR 80:324-333, 2018.
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Clustering based on Synchronization Residuals

(a) Spectral Gap = 0.22
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Compare with Spectral Clustering

Error Ratio
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Phase Synchronization: Synchronization Over U(1)

» Assume the underlying graph I is complete
» Ground truth: phase vector z = (expty,...,exp LO,,)T e Cy

» Measurements: noisy pairwise phase offsets Hj; ~ z;Z;, or in
matrix form
H := zz* + noise
» Goal: recover the true phase vector z (up to a global
multiplicative factor)
» Spectral Relaxation: solve for the top eigenvector of H,
denoted as X (scaled to ||X||, = v/n), then define X € C by

)A(,' = )N(,'/ |)?,’



Noise Models

» Additive Gaussian Noise Model
H=zz"+cW

where W is a standard complex Wigner matrix with i.i.d.
standard complex Gaussian entries above the diagonal

» Random Corruption Model

s — ziZj with prob. r € [0,1]
Y | Unif (U(1)) with prob. 1—r



Optimization Problem Formulation

min |[xx* — H|Z & maxx*Hx
x€Cy x€Cy

> We may well assume z = (1,...,1)"

» Nonconvex problem, can be attacked using convex (spectral
or SDP) relaxation

» For additive Gaussian noise, convex relaxation almost recovers
the ground truth z € C{ with high probability for noise level

uptoo =0 (\/n/ log n) [Zhong & Boumal (2018)];
non-rigorous statistical-physics-based methods predict the
same holds up to o = O (y/n) [Javanmard et al. (2016)]

» For random corruption model, [Singer (2011)] argues that
|Corr (X, z)| > 1/+/n with high probability if r > 1//n
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Multi-Frequency Phase Synchronization

» Assume random corruption model

> Instead of solving

max x* Hx
xeCy

let us solve

kmax

max Z (xk)HU K

xeCy 1

where xk := (X{‘, e ,X,’,‘)—r e C?, and H® is the n-by-n
Hermitian matrix with Hi(jk) = H,éf

» Solving this nonconvex optimization by a popular two-stage
strategy: (i) produce a good initialization (ii) perform local
methods e.g. gradient descent or (generalized) power iteration

o Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,” The 36th International Conference on
Machine Learning (ICML 2019). arXiv:1901.08235.



Multi-Frequency Phase Synchronization: Stage 1

> Fix kpax > 1, build H®, ... Hkmax) out of H = H(®)

» For each k =1,..., kmax, solve the subproblem

u¥) .= argmax v H®y
veCy

using any convex relaxation, and set W) := (k) (u(k))*

» Forall 1 <i,j < n, find the “peak location” of the
spectrogram

é,-j ‘= arg max
¢€[0,27]

k]'l'lax
el S wpeel
k=1

» Construct Hermitian matrix H € C7*" by H;; = exp 10},
extract the top eigenvector X, and perform entrywise
normalization to get X € C}



Multi-Frequency Phase Synchronization: Stage 2
Basically do generalized power iteration, but with a little extra
work to ensure the ky.x frequency channels “march in formation”

» For iteration counter t = 0, set z(k0) .= 2k for
k=1,..., kmax
» Until convergence (t=1,...,T),

» oyt = HW (D) for k=1, knax
» For each entry 1 < i < n, soft-threshold the spectrogram

kmax
E U Lk@
2w

a9 .= [ SoftThresh (h,(-t) (9)) 0
0

then convert back

kst)

and finally get z,-(
» Output 2 := z(L.T)

€ C! by entrywise normalization



07 08 09 1 1.1 12 13
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Figure: Random corruption model, r = \/y/n

» [Singer (2011)] only asserts |Corr (2,z)| > 1/y/n for A > 1

» Even for A < 1, our method attains |Corr (2, z)| — 1 provided
that kpax > 1!
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Focusing on Stage 1

> Fix kpax > 1, build H®, ... Hkmax) out of H = H(®)

» For each k =1,..., kmax, solve the subproblem

u¥) .= argmax v H®y
veCy

using any convex relaxation, and set W) := (k) (u(k))*
» Forall 1 <i,j < n, find the “peak location” of the
spectrogram

kmax
é,-j := argmax |Re Z W,-J(-k)e_Lk‘z’
¢E[0,2ﬂ'] k=1
» Construct Hermitian matrix H € C7*" by H;; = exp 10},
extract the top eigenvector X, and perform entrywise
normalization to get X € C}




Why does it work?

» By a perturbation analysis, we expect
W) = 4R (yRy* = Zk(K)* + EK) & 2K (ZK)*
from solving each subproblem

u®) = argmax v*H®)y
veCy

» The peak finding step is expected to ensure

kmax
HA,-J- = argmax |Re { Z W,-J(-k)ebk‘z’}‘

¢€[0,27] —1
kmax

~ arg max |Re { Z z,-kZJ-ke_Lk‘f’H =0; —0;
¢€[0,27] k=1

provided that £(%) does not “perturb away” the maximum!



Landscape Analysis of the Dirichlet Kernel

{%{ W (k) —Lkd)} mz W (k) —Lk¢

k—_ kmax

kmax max

_ Z Lk(6;—6;) ﬂ/«p_i_ Z Ek) —iké

k=—Kkmax k=—kmax



Landscape Analysis of the Dirichlet Kernel

kmax kmax
Re{z V‘/ij(.k)e—l,kgb} _ Z Vvij(‘k)e—bk(f)
k:]. k—_kmdx

kmax max

_ Z Lk(6;—6;) ﬂ/«p_i_ Z Ek) —iké

k=—kmax k=—kmax

Sin |:<kmax + ;) (91 - 9_] - ¢):| kmax
_ (k) —tko
= 71 + Z E,-J- e
sin | = (0; — 6,

o

=: Diry,.. (0i — 0 — &) + Ri.... (¢)




Landscape Analysis of the Dirichlet Kernel
Key Observation: |§; — (6; — ;)| < 6. < 2k 71 Whenever

1
2kmax + 1 — R (0) > sin (6./2) + Rinax (9)

12

——Periodogram z +— |Diry, (z

T

]
100\ o Zero locus 274/ (2m + 1)
- - Envelope x +— 1/sin (z/2

N2
I




Landscape Analysis of the Dirichlet Kernel

Key Observation: |§; — (6; — 6;)| < 6. < st whenever

1
2kmax + 1 — R R
a + kmax ((ZS) > sin (0*/2) + kmax (¢)
which is satisfied if
1

2kmax +1-— kaax (QZ)) > ) + kaax (d))

1 PR | S
>N <2kmx+1

kmax
1 Z E(k)e—u«z;_ 1 1

if - kaax (gb) < 1_
kmax k=—kunax J kmax 2kmax sin (m)
(k)

We just need a uniform upper bound for the Eij sl

=



Eigenvector perturbation analysis in £,.-norm!

» Standard perturbation bounds use ¢»-norm (e.g.
Davis—Kahan), but most application scenarios of spectral
methods require bounding the £,,-norm

» Active research area in recent years, e.g. [Eldridge et al.
(2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)];
[Zhong & Boumal (2018)]

» Sharpest results to date use a “leave-one-out” trick
popularized by statisticians

Lemma (Gao & Zhao 2019). For any 0 < € < 2, with probability
at least 1 — O (n*(”e)), there exists absolute constant C > 0 such
that

] ey

n

e Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,” The 36th International Conference on
Machine Learning (ICML 2019). arXiv:1901.08235.



Putting Everything Together

Theorem (Gao & Zhao 2019). With all (mild) assumptions
satisfied, with high probability the multi-frequency phase
synchronization algorithm produces an estimate 2 satisfying

C/
k2

max

Corr(2,z) > 1—
provided that

1

V27 (1-4Go\/logn/n) -2

In particular, Corr (2,z) — 1 as kpax — 00.

Kmax > max ¢ 5,

e Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,” The 36th International Conference on
Machine Learning (ICML 2019). arXiv:1901.08235.
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Class Averaging and the Intrinsic Model

» Goal: Classify cryo-EM images /1, b, ... according to their
viewing directions
> Procedure:

» Compute the rotation-invariant distance between all pairs of
images drip (/i [;) == mingepo,2q [|i — €“Ij||z, and denote
for the optimal alignment angle

» Fix threshold € > 0 and define Hermitian W € C"*" by

exp (La,'j) if dRID (/,', IJ) <€
W = .
0 otherwise

» Solve for the top three eigenvectors of W, which embeds
h,b,... into R3

» Use correlation in the embedded R3 space to determine the
closeness between viewing directions



Multi-Frequency Class Averaging

> Idea directly descended from the multi-frequency phase
synchronization, but the underlying fibre bundle is non-trivial!

» Fix threshold € > 0 and define for each k =1,..., knax
Hermitian W) € C"™" by

k. [ (tkag) it digy (1) < €
! 0 otherwise

» Solve for the top 2k + 1 eigenvectors of W), which embeds
Ii, b, ... into R2k+1

» Use all correlations in the embedded R2**1 (k = 1,..., kpax)
spaces to determine the closeness between viewing directions

o Yifeng Fan & Zhizhen Zhao. “Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion
Maps,” preprint. arXiv:1904.07772.



Multi-Frequency Information Improves Class Averaging

CWF ASPIRE

o Yifeng Fan & Zhizhen Zhao. “Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion
Maps,” preprint. arXiv:1904.07772.



Open Problems

v

Landscape and convergence analysis for the Stage 2
algorithm?
Algorithm works for SO(3) seamlessly, but theory?

Possible extension to other synchronization and multireference
alignment problems over compact/noncompact Lie groups?

Mult-frequency vector diffusion maps?

A learning paradigm on sheaves?



Thank You!
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e Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,”
Machine Learning (ICML 2019). arXiv:1901.08235.
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