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Graph-Based Data Analysis




Evolutionary Biology
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Interpretability Issue
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e Boyer et al. "Algorithms to Automatically Quantify the Geometric Similarity of Anatomical Surfaces.”
Proceedings of the National Academy of Sciences 108.45 (2011): 18221-18226.



Collection Shape Analysis
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® Q. Huang & L. Guibas. “Consistent Shape Maps via Semidefinite Programming”, Computer Graphics Forum,
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Cryo-Electron Microscopy
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@ Singer et al. “Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors”, SIAM
Journal on Imaging Sciences, 4 (2), pp. 543-572 (2011).



Cryo-Electron Microscopy: Real Challenge is Low SNR

Fig. 3 The left most image is a clean simulated projection image of the E.coli 50S ribosomal subunit. The
other three images are real electron microscope images of the same subunit

e Hadani & Singer. “Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy Il — The
Class Averaging Problem,” Foundations of Computational Mathematics, 11 (5), pp. 589-616 (2011).



Yi=Rix+§;
Ri € O(d), & ~1ii.d. noise

® Afonso S. Bandeira. “Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science.” (2015).
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= Solve the minimization problem
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o A. Nemirovski, “Sums of Random Symmetric Matrices and
Constraints”, Math. Programming, 109 (2007), pp. 283-317.
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Quadratic Optimization Under Orthogonality



Convex Relaxations (1)
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» Spectral Relaxation
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o Chaudhury et al. "“Global Registration of Multiple Point Clouds using Semidefinite Programming”, SIAM Journal
on Optimization, 25(1):468-501, 2015.



Convex Relaxations (II)
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o Chaudhury et al. “Global Registration of Multiple Point Clouds using Semidefinite Programming”, SIAM Journal
on Optimization, 25(1):468-501, 2015.



Convex Relaxations (II)
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» SDP Relaxation
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o Chaudhury et al. “Global Registration of Multiple Point Clouds using Semidefinite Programming”, SIAM Journal
on Optimization, 25(1):468-501, 2015.
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Phase Synchronization: Synchronization Over U(1)

» Assume the underlying graph I is complete
» Ground truth: phase vector z = (expty,...,exp LO,,)T e Cy

» Measurements: noisy pairwise phase offsets Hj; ~ z;Z;, or in
matrix form
H := zz* + noise
» Goal: recover the true phase vector z (up to a global
multiplicative factor)
» Spectral Relaxation: solve for the top eigenvector of H,
denoted as X (scaled to ||X||, = v/n), then define X € C by

)A(,' = )N(,'/ |)?,’



Noise Models

» Additive Gaussian Noise Model
H=zz"+cW

where W is a standard complex Wigner matrix with i.i.d.
standard complex Gaussian entries above the diagonal

» Random Corruption Model

s — ziZj with prob. r € [0,1]
Y | Unif (U(1)) with prob. 1—r



Optimization Problem Formulation

min ||xx™ — H||12; < maxx Hx
xeCy xeCy

» Nonconvex problem, can be attacked using convex (spectral
or SDP) relaxation

» For additive Gaussian noise, convex relaxation almost recovers
the ground truth z € C{ with high probability for noise level
uptoo =0 (\/n/ log n) [Zhong & Boumal (2018)];
non-rigorous statistical-physics-based methods predict the
same holds up to ¢ = O (y/n) [Javanmard et al. (2016)]

» For random corruption model, [Singer (2011)] argues that
|Corr (X, z)| > 1/+/n with high probability if r > 1//n
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Multi-Frequency Phase Synchronization

» Assume random corruption model

> Instead of solving

max x* Hx
xeCy

let us solve

kmax

max Z (xk)HU K

xeCy 1

where xk := (X{‘, e ,X,’,‘)—r e C?, and H® is the n-by-n
Hermitian matrix with Hi(jk) = H,éf

» Solving this nonconvex optimization by a popular two-stage
strategy: (i) produce a good initialization (ii) perform local
methods e.g. gradient descent or (generalized) power iteration

o Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,” The 36th International Conference on
Machine Learning (ICML 2019). arXiv:1901.08235.
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» For each k =1,..., kpax, solve the subproblem
uk) = argmax v*H®)y
veCt
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Multi-Frequency Phase Synchronization: Stage 1
> Fix kmax > 1, build H®), ... Hkma) out of H = H)

» For each k =1,..., kpax, solve the subproblem

uk) = argmax v*H®)y
veCt

using any convex relaxation, and set W) := (k) (u(k))*
» Forall 1 <i,j < n, find the “peak location” of the
spectrogram

kmax

R 1
0jj := arg max |~ Z ‘/V"J('k)eﬂkq5
pel02r] | < Ty

» Construct Hermitian matrix H € CT*" by ﬁu = exp LGA;J-,
extract the top eigenvector X, and perform entrywise
normalization to get X € Cf



Multi-Frequency Phase Synchronization: Stage 2

Basically do generalized power iteration, but with a little extra
work to ensure the ky.x frequency channels “march in formation”

» For iteration counter t = 0, set 2(k0) .= gk for
k=1,..., kinax
» Until convergence (t=1,...,T),

> ylkot) .= HK) 7 (k,t=1) fork—l oo, Kmax
» For each entry 1 </ < n, soft- threshold the spectrogram

kmax
po .1

k.t
L ’( )eLkG
k=—kmax

then convert back
27
gt = / SoftThresh () (6) ) a6
0

and finally get z,-(k’t)

» Output 2 := z(1L.T)

€ C! by entrywise normalization
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Figure: Random corruption model, r = \/y/n

» [Singer (2011)] only asserts |Corr (2,z)| > 1/y/n for A > 1

» Even for A < 1, our method attains |Corr (2, z)| — 1 provided
that kpax > 1!
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Focusing on Stage 1

> Fix kmax > 1, build H®) ... Hkma) out of H = H()
» For each k =1,..., kpax, solve the subproblem
u¥) .= argmax v H®y
veCy
using any convex relaxation, and set W) := y(k) (u(k)”

» Forall 1 </ j < n, find the “peak location” of the
spectrogram

kmax

~ 1
0jj == argmax |- Z V\/,-J(-k)e_Lk‘z’
$€[0,2n] k=— Ko

» Construct Hermitian matrix H € C7*" by Hj = exp (0,
extract the top eigenvector X, and perform entrywise
normalization to get X € Cf



Why does it work?
» By a perturbation analysis, we expect
W) = 4R (yRy* = Zk(K)* + EK) & 2K (ZK)*
from solving each subproblem

u®) = argmax v*H®)y
veCy

» The peak finding step is expected to ensure

kmax
A

1 (K) gtk
0;; = arg max W e=tko
Y clon 2,(2_:1 v

1 kmax

ksk —tk¢
2 Z Zizj€

k=1

A% arg max

— 6 6,
¢€[0,27]

provided that £(%) does not “perturb away” the maximum!



Landscape Analysis of the Dirichlet Kernel
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Landscape Analysis of the Dirichlet Kernel
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Landscape Analysis of the Dirichlet Kernel

Key Observation: |§; — (6; — ;)| < 6. < 2k 71 Whenever

1
2k, 1—|IR > — R
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Landscape Analysis of the Dirichlet Kernel

Key Observation: |§; — (0; — 6;)| < . < 2k 77 whenever

1

2kmax +1 —||R —_— R
ma + ” kmax”oo > sin (0*/2) + || kmax”
which is satisfied if
1
2kma~x + ]' - HkaaxHoo > 7/ N\ + Hkaax”OO
sin (2km:x+1)
1
= |EP|L ~ = Rl < 1= ——
max 2kmax Sin (2km:x+1)

We just need a uniform upper bound for the EI.J(.k)’sI



Eigenvector perturbation analysis in £,.-norm!

» Standard perturbation bounds use f»-norm (e.g.
Davis—Kahan), but most application scenarios of spectral
methods require bounding the £,,-norm

» Active research area in recent years, e.g. [Eldridge et al.
(2017)]; [Abbe et al. (2017)]; [Fan et al. (2018)];
[Zhong & Boumal (2018)]

» Sharpest results to date use a “leave-one-out” trick
popularized by statisticians

Lemma. For any 0 < € < 2, with probability at least
1-0 (n_(2+€)), there exists absolute constant C > 0 such that

HEIS*)H < cy/loen

- n

e Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,” The 36th International Conference on
Machine Learning (ICML 2019). arXiv:1901.08235.



Putting Everything Together

Theorem (Gao & Zhao 2019). With all (mild) assumptions
satisfied, with high probability the multi-frequency phase
synchronization algorithm produces an estimate 2 satisfying

C/
k2

max

Corr(2,z) > 1—
provided that

1

V27 (1-4Go\/logn/n) -2

In particular, Corr (2,z) — 1 as kpax — 00.

Kmax > max ¢ 5,

e Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,” The 36th International Conference on
Machine Learning (ICML 2019). arXiv:1901.08235.
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Class Averaging and the Intrinsic Model

» Goal: Classify cryo-EM images /1, b, ... according to their
viewing directions
> Procedure:

» Compute the rotation-invariant distance between all pairs of
images drip (/i [;) == mingepo,2q [|i — €“Ij||z, and denote
for the optimal alignment angle

» Fix threshold € > 0 and define Hermitian W € C"*" by

W — exp (La,'j) if drip (/,', IJ) <€
v 0 otherwise

» Solve for the top 3 eigenvectors 1)1, 12,13 of W, which

embeds 11, b, ... into R3

» Use correlation in the embedded R* space to determine the
closeness between viewing directions



Multi-Frequency Class Averaging

> ldea directly descended from the multi-frequency phase
synchronization, but the underlying fibre bundle is non-trivial!

» Fix threshold ¢ > 0 and define for each k =1, ..., knax
Hermitian W) e C"™" by

wk) . — {exp (tkayj) if drip (1, 1) < €

i 0 otherwise
: (k) (k)
» Solve for the top 2k + 1 eigenvectors ¢y, -+ by, " | of
W) which embeds I, b, ... into R2k+1
» Use all correlations in the embedded R***1 (k =1,..., kpax)

spaces to determine the closeness between viewing directions

e Yifeng Fan & Zhizhen Zhao. “Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion
Maps,” preprint. arXiv:1904.07772.



Why 2k + 17 Some Representation Theoretic Patterns

» (G., Fan, Zhao 2019) For sufficiently large sample size n
and appropriately small € > 0, the top eigenspace of Wk is
(2k + 1)-dimensional, and the spectral gap grows linearly in k:

k k 1+ k
AE()_)\Eﬁle 4 62

> Larger k = larger spectral gap = better numerical stability!

e Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint.



More Representation Theoretic Patterns......

» (G., Fan, Zhao 2019) The viewing angle §;; between image i
and image j satisfies

2k+1

. ; 1+ cosf;\ "
> u® (i) (J)‘ = <21)

> Larger k = easier thresholding

» Can also jointly use k =1, -+ | kyyax to construct polynomial
filters for cos0;;

e Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint.



Multi-Frequency Information Improves Class Averaging

0.06
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e Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging
for Three-Dimensional Cryo-Electron Microscopy,” preprint.



Multi-Frequency Information Improves Class Averaging
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o Yifeng Fan & Zhizhen Zhao. “Cryo-Electron Microscopy Image Analysis Using Multi-Frequency Vector Diffusion

Maps,” preprint. arXiv:1904.07772.
e Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging

for Three-Dimensional Cryo-Electron Microscopy,” preprint.



Open Problems

v

Landscape and convergence analysis for the Stage 2
algorithm?
Algorithm works for SO(3) seamlessly, but theory?

Possible extension to other synchronization and multireference
alignment problems over compact/noncompact Lie groups?

Mult-frequency vector diffusion maps?

A learning paradigm on sheaves?



Thank You!
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e Tingran Gao & Zhizhen Zhao. “Multi-Frequency Phase Synchronization,” The 36th International Conference on

Machine Learning (ICML 2019). arXiv:1901.08235.
e Tingran Gao, Yifeng Fan, Zhizhen Zhao. “Representation Theoretic Patterns in Multi-Frequency Class Averaging

for Three-Dimensional Cryo-Electron Microscopy,” preprint.



