Gaussian Process Landmarking on Manifolds

Tingran Gao

Committee on Computational and Applied Mathematics Department of Statistics The University of Chicago

Applied Math Youth Forum Beijing International Center for Mathematical Research Beijing, China

December 22, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Motivation

- Geometric Morphometrics
- Experimental Design

Gaussian Process Landmarking

- Sequential Experimental Design
- Witten Laplacian
- Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Outline

Motivation

- Geometric Morphometrics
- Experimental Design

Gaussian Process Landmarking

- Sequential Experimental Design
- Witten Laplacian
- Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Morphology and Classification

Systema Naturae, 1735

Carl Linnaeus (1707-1778)

<ロト < 団 > < 臣 > < 臣 > < 臣 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 1/37

Iris — A Classical Example of Morphometrics

Iris setosa				Iris versicolor				Iris virginica			
Sepal length	Sepal width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width
5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0	$ \begin{array}{r} 3.5 \\ 3.0 \\ 3.2 \\ 3.1 \\ 3.6 \\ 3.9 \\ 3.4 \\ 3.4 \\ 3.4 \end{array} $	$ \begin{array}{c c} 1 \cdot 4 \\ 1 \cdot 4 \\ 1 \cdot 3 \\ 1 \cdot 5 \\ 1 \cdot 4 \\ 1 \cdot 7 \\ 1 \cdot 4 \\ 1 \cdot 5 \end{array} $	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \end{array}$	7.0 6.4 6.9 5.5 6.5 5.7 6.3 4.9	$3 \cdot 2$ $3 \cdot 2$ $3 \cdot 1$ $2 \cdot 3$ $2 \cdot 8$ $2 \cdot 8$ $3 \cdot 3$ $2 \cdot 4$	$ \begin{array}{r} 4.7 \\ 4.5 \\ 4.9 \\ 4.0 \\ 4.6 \\ 4.5 \\ 4.7 \\ 3.3 \\ 3.3 $	$ \begin{array}{r} 1 \cdot 4 \\ 1 \cdot 5 \\ 1 \cdot 5 \\ 1 \cdot 3 \\ 1 \cdot 5 \\ 1 \cdot 3 \\ 1 \cdot 6 \\ 1 \cdot 0 \\ \end{array} $	6·3 5·8 7·1 6·3 6·5 7·6 4·9 7·3	3·3 2·7 3·0 2·9 3·0 3·0 2·5 2·9	6.0 5.1 5.9 5.6 5.8 6.6 4.5 6.3	2.5 1.9 2.1 1.8 2.2 2.1 1.7 1.8

R.A. Fisher "The Use of Multiple Measurements in Taxonomic Problems." Annals of Eugenics 7.2 (1936): 179-188.

Landmark-based Geometric Morphometrics

・ロト ・ 母 ト ・ 手 ト ・ 目 ・ 今 の や

3/37

Geometric Morphometrics

Boyer et al. "Algorithms to Automatically Quantify the Geometric Similarity of Anatomical Surfaces." Proceedings of the National Academy of Sciences 108.45 (2011): 18221-18226.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣 - 釣�??

<ロ> (四) (四) (三) (三) (三) (三)

२.०० 5/37

Shape Distances

►

John Clifford Gower, John C. Gower, and Garmt B. Dijksterhuis. "Procrustes Problems." vol. 3 of Oxford Statistical Science Series, Oxford University Press Oxford, 2004.

Rima Alaifari, Ingrid Daubechies, and Yaron Lipman. "Continuous Procrustes distance between two surfaces." Communications on Pure and Applied Mathematics 66, no. 6 (2013): 934-964.

Doug M. Boyer, Yaron Lipman, Elizabeth St Clair, Jesus Puente, Biren A. Patel, Thomas Funkhouser, Jukka Jenvall, and Ingrid Daubechies. "Algorithms to automatically quantify the geometric similarity of anatomical surfaces." Proceedings of the National Academy of Sciences 108, no. 45 (2011): 18221-18226.

Facundo Mémoli. "Gromov–Wasserstein distances and the metric approach to object matching." Foundations of Computational Mathematics 11, no. 4 (2011): 417-487.

Rongjie Lai, Hongkai Zhao. "Multi-scale Non-Rigid Point Cloud Registration Using Robust Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap", SIAM Journal on Imaging Sciences 10(2), pp. 449-483, 2017.

Patrice Koehl, Joel Hass, "Landmark-Free Geometric Methods in Biological Shape Analysis", Journal of The Royal Society Interface, 12 no. 113 (2015): 20150795

6/37

Shape Distances

Boyer et al. 2011, 2012 Daubechies et al. 2011, 2013 Al-Aifari et al. 2013

ies et al. 2011, 2013 Conformal Wasserstein Distance Al-Aifari et al. 2013 Continuous Procrustes Distance

$$d_{cP}(S_1, S_2) = \inf_{\substack{C \in \mathcal{A}(S_1, S_2) \ R \in \mathbb{R}(3)}} \inf_{\substack{G \in \mathbb{R}(3) \ G \in \mathbb{R}(3)}} \left(\int_{S_1} \|R(x) - C(x)\|^2 \, d\mathrm{vol}_{S_1}(x) \right)^{\frac{1}{2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

7/37

Landmark-Free Approaches: Bypass Feature Extraction

Correspondence-Based Shape Distances

$$D(S_1, S_2) = \inf_{f \in \mathscr{A}(S_1, S_2)} F(f; S_1, S_2)$$

Revisiting Landmarks: For the Sake of Interpretability, or Turning the Clock Back?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つんで

9/37

Bookstein's Typology

10/37

Bookstein's Typology Cracked?

Outline

Motivation

- Geometric Morphometrics
- Experimental Design
- Gaussian Process Landmarking
 - Sequential Experimental Design
 - Witten Laplacian
 - Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 12/37

► Estimation: Given i.i.d. data {(X_i, Y_i), 1 ≤ i ≤ n} sampled from a joint distribution D, find good estimators by solving

$$\min_{\hat{f}\in\mathscr{F}}\mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\left(\hat{f}_n\left(X\mid\{(X_i,Y_i)\}\right)-Y\right)^2\right]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

12/37

► Estimation: Given i.i.d. data {(X_i, Y_i), 1 ≤ i ≤ n} sampled from a joint distribution D, find good estimators by solving

$$\min_{\hat{f}\in\mathscr{F}}\mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\left(\hat{f}_n\left(X\mid\{(X_i,Y_i)\}\right)-Y\right)^2\right]$$

► Experimental Design: Given an estimation procedure f → f̂_n for a class of target functions f ~ F, find samples x₁, · · · , x_n that minimize

$$\min_{x_1,\cdots,x_n} \mathbb{E}_{f \sim \mathscr{F}} \left[\left(\hat{f}_n \left(x \mid \{ (x_i, f(x_i)) \} \right) - f(x) \right)^2 \right]$$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

12/37

► Estimation: Given i.i.d. data {(X_i, Y_i), 1 ≤ i ≤ n} sampled from a joint distribution D, find good estimators by solving

$$\min_{\hat{f}\in\mathscr{F}}\mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\left(\hat{f}_n\left(X\mid\{(X_i,Y_i)\}\right)-Y\right)^2\right]$$

► Experimental Design: Given an estimation procedure f → f̂_n for a class of target functions f ~ 𝔅, find samples x₁, · · · , x_n that minimize

$$\min_{x_{1},\cdots,x_{n}} \mathbb{E}_{f \sim \mathscr{F}} \left[\left(\hat{f}_{n} \left(x \mid \{ (x_{i}, f(x_{i})) \} \right) - f(x) \right)^{2} \right]$$

► Gaussian Process Experimental Design: F = GP (m, K) is a Gaussian process on domain X

- Gaussian process GP(0, K) defined on a domain Ω by
 - kernel function $K : \Omega \times \Omega \to \mathbb{R}$
 - ► For $f \sim GP(0, K)$, its values at any *n* points $x_1, \dots, x_n \in \Omega$

$$(f(x_1),\cdots,f(x_n))^{\top}\in\mathbb{R}^n$$

follow a multivariate normal distribution

$$\mathcal{N}(0, \mathscr{K}_n)$$

where

$$\mathscr{K}_{n} = \begin{pmatrix} K(x_{1}, x_{1}) & \dots & K(x_{1}, x_{n}) \\ \vdots & & \vdots \\ K(x_{n}, x_{1}) & \dots & K(x_{n}, x_{n}) \end{pmatrix} \in \mathbb{R}^{n \times n}$$

<ロ> < □ > < □ > < 三 > < 三 > < 三 > ○ < ○ 13/37

• Conditioned on values at x_1, \dots, x_n , i.e.

$$f(x_i) = y_i, \quad 1 \leq i \leq n,$$

the value f(x) at any new point $x \in \Omega$ follows a normal distribution

$$f(x) \mid \{f(x_i) = y_i, 1 \le i \le n\}$$

$$\sim \mathscr{N}\left(\mathbf{r}_n(x)^{\top} \mathscr{K}_n^{-1} \mathbf{y}, K(x, x) - \mathbf{r}_n(x)^{\top} \mathscr{K}_n^{-1} \mathbf{r}_n(x)\right)$$

where

$$\mathbf{r}_n(x) = (K(x, x_1), \cdots, K(x, x_n))^\top \in \mathbb{R}^n$$
$$\mathbf{y} = (y_1, \cdots, y_n)^\top \in \mathbb{R}^n.$$

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ < ○ 14/37</p>

Mean Squared Error (MSE) of the predictor

$$\hat{f}_n(x) = \mathbb{E} \left(f(x) \mid \{ f(x_i) = y_i, 1 \le i \le n \} \right)$$
$$= \mathbf{r}_n(x)^\top \mathscr{K}_n^{-1} \mathbf{y}$$

is simply

$$MSE\left(\hat{f}_{n}(x)\right) = \mathbb{E}\left(\hat{f}_{n}(x) - f(x)\right)^{2}$$
$$= K(x, x) - \mathbf{r}_{n}(x)^{\top} \mathscr{K}_{n}^{-1} \mathbf{r}_{n}(x)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

15/37

Mean Squared Error (MSE) of the predictor

$$\hat{f}_n(x) = \mathbb{E} \left(f(x) \mid \{ f(x_i) = y_i, 1 \le i \le n \} \right)$$
$$= \mathbf{r}_n(x)^\top \mathscr{K}_n^{-1} \mathbf{y}$$

is simply

$$MSE\left(\hat{f}_{n}(x)\right) = \mathbb{E}\left(\hat{f}_{n}(x) - f(x)\right)^{2}$$
$$= K(x, x) - \mathbf{r}_{n}(x)^{\top} \mathscr{K}_{n}^{-1} \mathbf{r}_{n}(x)$$

► Kriging: How to pick x₁, · · · , x_n ∈ M so as to minimize the Integrated MSE (IMSE)

IMSE
$$\left(\hat{f}_{n}\right) := \int_{\Omega} MSE\left(\hat{f}_{n}(x)\right) dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Universal Convergence of (Simple) Kriging

Spectral Convergence (Wang-Tuo-Wu 2017). If *K* is a Gaussian kernel, $\{x_1, \dots, x_n\} \subset \Omega$ a bounded open subset of a Euclidean space, then w.h.p.

$$\sup_{x\in\Omega}\left|\hat{f}_{n}\left(x\right)-f\left(x\right)\right|=O_{P}\left(h_{n}^{\frac{c}{h_{n}}-\frac{1}{2}}\log^{\frac{1}{2}}\left(1/h_{n}\right)\right)$$

where h_n is the fill distance

$$h_n := \sup_{x \in \Omega} \min_{1 \le i \le n} \|x - x_i\|.$$

Corollary. Let h_* denote the minimum fill distance on Ω for *n* points. Then

$$\inf_{\{x_1,\cdots,x_n\}\subset\Omega} \mathrm{IMSE}\left(\hat{f}_n\right) = O_P\left(h_*^{\frac{c}{h_*}-1}\log\left(1/h_*\right)\right).$$

Wenjia Wang, Rui Tuo, and C. F. Wu. "Universal Convergence of Kriging." arXiv:1710.06959 (2017).

<ロ><□><□><□><□><□><□><□><□><□><□><□><□><0<○<16/37

Outline

Motivation

- Geometric Morphometrics
- Experimental Design

Gaussian Process Landmarking

- Sequential Experimental Design
- Witten Laplacian
- Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Outline

Motivation

- Geometric Morphometrics
- Experimental Design
- Gaussian Process Landmarking
 - Sequential Experimental Design
 - Witten Laplacian
 - Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Select x_1, \dots, x_n sequentially
- Methodology: Iteratively pick the most uncertain location

- Select x_1, \dots, x_n sequentially
- Methodology: Iteratively pick the most uncertain location
- With x_1, \dots, x_{i-1} given, pick

$$x_i := \operatorname*{arg\,max}_{x \in \Omega} \mathrm{MSE}\left(\hat{f}_{i-1}\left(x
ight)
ight)$$

- Select x_1, \dots, x_n sequentially
- Methodology: Iteratively pick the most uncertain location
- With x_1, \dots, x_{i-1} given, pick

$$x_i := \operatorname*{arg\,max}_{x \in \Omega} \operatorname{MSE}\left(\widehat{f}_{i-1}\left(x
ight)
ight)$$

 For Gaussian process experimental design, this amounts to iteratively picking the point maximizing

$$\mathrm{MSE}\left(\hat{f}_{i-1}\left(x\right)\right) = \mathcal{K}\left(x,x\right) - \mathbf{r}_{i-1}\left(x\right)^{\top} \mathscr{K}_{i-1}^{-1} \mathbf{r}_{i-1}\left(x\right)$$

- Select x_1, \dots, x_n sequentially
- Methodology: Iteratively pick the most uncertain location
- With x_1, \dots, x_{i-1} given, pick

$$x_i := \operatorname*{arg\,max}_{x \in \Omega} \operatorname{MSE}\left(\widehat{f}_{i-1}\left(x
ight)
ight)$$

 For Gaussian process experimental design, this amounts to iteratively picking the point maximizing

$$\mathrm{MSE}\left(\hat{f}_{i-1}\left(x\right)\right) = \mathcal{K}\left(x,x\right) - \mathbf{r}_{i-1}\left(x\right)^{\top} \mathscr{K}_{i-1}^{-1} \mathbf{r}_{i-1}\left(x\right)$$

 Numerical Linear Algebra Perspective: Cholesky Decomposition with Complete Pivoting

Gaussian Process Landmarking

Input: *d*-dimensional Manifold *M* isometrically embedded in \mathbb{R}^D , where d < D, and number of landmarks *N*

• Construct a kernel $K^c: M \times M \to \mathbb{R}$

$$K_{\epsilon}^{c}(x,y) = \int_{M} e^{-\frac{1}{2\epsilon} \|x-z\|_{D}^{2}} c(z) e^{-\frac{1}{2\epsilon} \|z-y\|_{D}^{2}} \mathrm{dvol}_{M}(z)$$

where $c: M \to \mathbb{R}$ is the (Gauss/mean/L²-) curvature of MFor i = 1

$$x_{1} = \arg\max_{x \in M} K_{\epsilon}^{c}(x, x)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

18/37

Gaussian Process Landmarking

For
$$i = 2, ..., N$$

$$x_{i} = \underset{x \in M}{\operatorname{arg\,max}} \operatorname{MSE}\left(\hat{f}_{i-1}\left(x\right)\right)$$

$$= \underset{x \in M}{\operatorname{arg\,max}} \left[K_{\epsilon}^{c}\left(x, x\right) - \mathbf{r}_{i-1}^{c}\left(x\right)^{\top} \mathscr{K}_{i-1}^{-1} \mathbf{r}_{i-1}^{c}\left(x\right)\right]$$

$$\mathbf{r}_{i-1}^{c}(x) = (\mathcal{K}_{\epsilon}^{c}(x, x_{1}), \cdots, \mathcal{K}_{\epsilon}^{c}(x, x_{i-1}))^{\top} \in \mathbb{R}^{i-1},$$
$$\mathscr{K}_{i-1} = \begin{pmatrix} \mathcal{K}(x_{1}, x_{1}) & \dots & \mathcal{K}(x_{1}, x_{i-1}) \\ \vdots & \vdots \\ \mathcal{K}(x_{i-1}, x_{1}) & \dots & \mathcal{K}(x_{i-1}, x_{i-1}) \end{pmatrix} \in \mathbb{R}^{(i-1) \times (i-1)}$$

Output: *N* landmarks $x_1, \cdots, x_N \in M$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲ロト ▲御ト ▲画ト ▲画ト ▲目 ● のへの

・□▶ ・@▶ ・注▶ ・注▶ … 注 … のへ()

Step 1 Step 2 Step 3 ×10⁻⁶

|▲□▶||▲御▶||▲国▶||▲国▶||| 臣||||夕�()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへの

Step 1 Step 2 Step 3 Step 4 ×10⁻⁶ Step 5Step 6

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Step 1 Step 2 Step 3 Step 4 ×10⁻⁶ Step 6 Step 7Step 5

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

◆□ → ◆圖 → ◆言 → 善 ・ 今 ◎ ◆

20/37

(a) Observer Landmarks

(b) First 22 Gaussian Process Landmarks

Efficient Adequate Coverage

<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > 22/37

Feature Matching by Bounded Distortion Filtering

・ロト ・団 ・ ・目 ・ ・ 目 ・ うんの

23/37

Feature Matching by Bounded Distortion Filtering

• GP landmarks
$$\left\{\zeta_1^{(1)}, \cdots, \zeta_L^{(1)}\right\}$$
 on S_1 , $\left\{\zeta_1^{(2)}, \cdots, \zeta_L^{(2)}\right\}$ on S_2

- For each $\zeta_{\ell}^{(1)}$ propose T matches $\zeta_{\ell \to 1}^{(2)}, \cdots, \zeta_{\ell \to T}^{(2)}$ on S_2
- Solve the minimization problem (with *iterative reweighted* least squares (IRLS))

$$\min_{\Psi \in \mathscr{BD}(K)} \sum_{\ell=1}^{L} \sum_{t=1}^{T} \left\| \Psi \left(\zeta_{\ell}^{(1)} \right) - \zeta_{\ell \to t}^{(2)} \right\|_{0}$$

where $\mathscr{BD}(K)$ is the space of quasiconformal maps between S_1 and S_2 with conformal distortion bounded by $K \ge 0$

[•] Yaron Lipman, Stav Yagev, Roi Poranne, David W. Jacobs, and Ronen Basri. "Feature Matching with Bounded Distortion." ACM Transactions on Graphics (TOG), 33, no. 3 (2014): 26.

25/37

æ 996

Outline

Motivation

- Geometric Morphometrics
- Experimental Design
- Gaussian Process Landmarking
 - Sequential Experimental Design
 - Witten Laplacian
 - Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Reweighted Kernel and the Witten Laplacian

$$\mathcal{K}_{\epsilon}^{c}\left(x,y\right) = \int_{M} e^{-\frac{1}{2\epsilon} \|x-z\|_{D}^{2}} c\left(z\right) e^{-\frac{1}{2\epsilon} \|z-y\|_{D}^{2}} \mathrm{dvol}_{M}\left(z\right)$$

THM. (G. et al. 2019b). For $f \in C^{2}(M)$

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\frac{\int_{M} K_{\epsilon}^{c}(x, y) f(y) \operatorname{dvol}_{M}(y)}{\int_{M} K_{\epsilon}^{c}(x, y) \operatorname{dvol}_{M}(y)} - f(x) \right]$$
$$= \Delta f(x) + \nabla f(x) \cdot \nabla \log c(x).$$

I.e., the infinitesimal generator of the diffusion process defined by transition kernel $K_{\epsilon}^{c}(x, y)$ is conjugate to the Witten Laplacian

$$L_{\epsilon} = -\Delta - rac{1}{\epsilon}
abla \log c \cdot
abla$$

• Tingran Gao, Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies. "Gaussian Process Landmarking for Three-Dimensional Geometric Morphometrics." *SIAM Journal on Mathematics of Data Science*, 1(1), 237–267 (2019)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Localization of Eigenfunctions

• Tingran Gao, Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies. "Gaussian Process Landmarking for Three-Dimensional Geometric Morphometrics." *SIAM Journal on Mathematics of Data Science*, 1(1), 237–267 (2019)

The Importance of Reweighting

• Tingran Gao, Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies. "Gaussian Process Landmarking for Three-Dimensional Geometric Morphometrics." *SIAM Journal on Mathematics of Data Science*, 1(1), 237–267 (2019)

Outline

Motivation

- Geometric Morphometrics
- Experimental Design

Gaussian Process Landmarking

- Sequential Experimental Design
- Witten Laplacian
- Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Sequential Experimental Design: Some Theory

► Statistically: If problem has submodularity (e.g. maximizing det (*ℋ_n*) in entropy-based sequential experimental design), can obtain near-optimality [Ko et al. 1995, Kause et al. 2008, Bouhtou et al. 2010]

$$\operatorname{OPT}_n \ge \operatorname{GPL}_n \ge (1 - \epsilon) \operatorname{OPT}_n$$

- Algorithmically: This problem is NP-hard, life is short, find polynomial time approximations [Avron and Boutsidis 2013, Nikolov 2015, Wang et al. 2017, Allen-Zhu et al 2018]
- ► Machine Learning: Active Learning [Lewis and Gale 1994, Settles 2010]
- Our Contribution: Estimates for the decay rate of

$$\left\| \operatorname{MSE}\left(\hat{f}_{n}\left(\cdot\right)\right) \right\|_{\infty} = \sup_{x \in M} \operatorname{MSE}\left(\hat{f}_{n}\left(x\right)\right)$$

Faster Decay Than Any Inverse Polynomials

THM (G. et al. 2019a). Let M be a d-dimensional Riemannian manifold isometrically embedded in \mathbb{R}^D , with d < D. Let x_1, \dots, x_n be sequentially sampled on M using the Gaussian process landmarking algorithm. If K_{ϵ}^c is in $C^{\ell}(M)$, then for any $1 \le k \le \ell$ there exists $C_k > 0$ such that

$$\sup_{x\in\mathcal{M}}\mathrm{MSE}\left(\widehat{f}_{n}\left(x\right)\right)\leq C_{k}n^{-\frac{k}{d}}$$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

for all sufficiently large $n \in \mathbb{N}$.

Faster Decay Than Any Inverse Polynomials

THM (G. et al. 2019a). Let M be a d-dimensional Riemannian manifold isometrically embedded in \mathbb{R}^D , with d < D. Let x_1, \dots, x_n be sequentially sampled on M using the Gaussian process landmarking algorithm. If K_{ϵ}^c is in $C^{\ell}(M)$, then for any $1 \le k \le \ell$ there exists $C_k > 0$ such that

$$\sup_{x\in\mathcal{M}}\mathrm{MSE}\left(\widehat{f}_{n}\left(x\right)\right)\leq C_{k}n^{-\frac{k}{d}}$$

for all sufficiently large $n \in \mathbb{N}$.

► Proof relies on the interpretation of the Gaussian process landmarking algorithm as applying the reduced basis method to the reproducing kernel Hilbert space associated with the Gaussian process GP (0, K^c_e).

[•] Tingran Gao, Shahar Z. Kovalsky, Ingrid Daubechies. "Gaussian Process Landmarking on Manifolds." SIAM Journal on Mathematics of Data Science, 1(1), 208–236 (2019)

Reproducing Kernel Hilbert Space for Gaussian Processes

• Mercer's Theorem:
$$K_{\epsilon}^{c}(x, y) = \sum_{k=0}^{\infty} e^{-\lambda_{k}} \phi_{k}(x) \phi_{k}(y)$$

RKHS: Closure under the RKHS norm of the set

$$\left\{\sum_{i\in I}a_{i}K_{\epsilon}^{c}\left(\cdot,z_{i}\right)\mid a_{i}\in\mathbb{R},z_{i}\in M,\operatorname{card}\left(I\right)<\infty\right\}$$

► Feature Mapping: $M \ni x \mapsto K_{\epsilon}^{c}(x, \cdot) \in \text{RKHS}$ Key Observation: If $V_{n} := \text{span} \{K_{\epsilon}^{c}(x_{1}, \cdot), \cdots, K_{\epsilon}^{c}(x_{n-1}, \cdot)\}$, then

$$\operatorname{MSE}\left(\widehat{f}_{n-1}\left(x\right)\right) = \operatorname{dist}_{\operatorname{RKHS}}\left(K_{\epsilon}^{c}\left(x,\cdot\right),V_{n}\right)$$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reduced Basis Method vs. Sequential Experimental Design

RBM	GP-SED
compact $K \subset \mathscr{H}$	compact $M^d \hookrightarrow \mathbb{R}^D$
$f_1 := \argmax_{h \in K} \ h\ $	$x_{1} := rg\max_{x \in M} K_{\epsilon}^{c}(x,x)$
$f_2 := rg \max_{h \in \mathcal{K}} \operatorname{dist}_{\mathscr{H}}(h, V_1)$ $V_1 := \operatorname{span} \{f_0\}$	$x_2 := rgmax_{x \in M} \operatorname{MSE}\left(\widehat{f}_1\left(x ight) ight)$
$f_n := \operatorname*{argmaxdist}_{\mathscr{H}}(h, V_{n-1})$ $V_{n-1} := \operatorname{span} \{f_0, \cdots, f_{n-1}\}$	$x_{n} := \operatorname*{argmax}_{x \in M} \mathrm{MSE}\left(\hat{f}_{n-1}\left(x\right)\right)$

Key Observation: If $V_n := \operatorname{span} \{ K_{\epsilon}^c(x_1, \cdot), \cdots, K_{\epsilon}^c(x_{n-1}, \cdot) \}$, then

$$\mathrm{MSE}\left(\hat{f}_{n-1}\left(x\right)\right) = \mathrm{dist}_{\mathrm{RKHS}}\left(\mathcal{K}_{\epsilon}^{c}\left(x,\cdot\right),V_{n}\right)$$

Greedy Algorithms in Reduced Basis Methods

$$d_{n} := \inf_{\substack{\dim Y=n \\ Y \subset \text{RKHS}}} \sup_{x \in M} \operatorname{dist}_{\text{RKHS}} (K_{\epsilon}^{c}(x, \cdot), Y)$$
$$\sigma_{n} := \sup_{x \in M} \operatorname{dist}_{\text{RKHS}} (K_{\epsilon}^{c}(x, \cdot), V_{n})$$

•
$$\sigma_n = \left\| \text{MSE}\left(\hat{f}_n\left(\cdot\right)\right) \right\|_{\infty}$$

- ► d_n is the Kolmogorov width, and d_n = O (h^k_n) if M is a C^k manifold, where h_n is the *fill distance* with n points (Wendland 2004)
- ▶ Results from the reduced basis method (Binev 2011, DeVore et al. 2013) can be used to obtain $\sigma_n = O\left(d_{\lfloor n/2 \rfloor}^{1/2}\right)$

H. Wendland, Scattered Data Approximation, vol. 17, Cambridge University Press, 2004.

Greedy Algorithms in Reduced Basis Methods

Theorem (DeVore et al. 2013). For any $N \ge 0$, $n \ge 1$, and $1 \le m < n$, there holds

$$\prod_{\ell=1}^{n} \sigma_{N+\ell}^2 \leq \left(\frac{n}{m}\right)^m \left(\frac{n}{n-m}\right)^{n-m} \sigma_{N+1}^{2m} d_m^{2n-2m}.$$

In particular, setting N = 0 and $m = \lfloor n/2 \rfloor$,

$$\sigma_{\mathbf{n}} \leq \sqrt{2} \left\| \mathbf{K}_{\epsilon}^{\mathbf{c}} \right\|_{\infty, \mathbf{M} \times \mathbf{M}}^{\frac{1}{2}} d_{\lfloor \mathbf{n}/2 \rfloor}^{\frac{1}{2}}$$

for all $n \in \mathbb{N}$, $n \geq 2$.

• P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, "Convergence Rates for Greedy Algorithms in Reduced Basis Methods." SIAM Journal on Mathematical Analysis, 43 (2011), pp. 1457–1472.

• R. DeVore, G. Petrova, and P. Wojtaszczyk, Greedy Algorithms for Reduced Bases in Banach Spaces, Constructive Approximation, 37 (2013), pp. 455–466.

Putting Everything Together.....

•
$$\sigma_n = O\left(d_{\lfloor n/2 \rfloor}^{1/2}\right)$$

• $d_n = O\left(h_n^{2k}\right)$
• $h_n = O\left(n^{-\frac{1}{d}}\right)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Putting Everything Together.....

•
$$\sigma_n = O\left(d_{\lfloor n/2 \rfloor}^{1/2}\right)$$

• $d_n = O\left(h_n^{2k}\right)$
• $h_n = O\left(n^{-\frac{1}{d}}\right)$

Conclusion: The sequential, greedy algorithm guarantees

$$\left\| \text{MSE}\left(\hat{f}_{n}\left(\cdot\right)\right) \right\|_{\infty} = \sigma_{n} \leq C_{k} n^{-\frac{k}{d}} \text{ for } C_{k} > 0, \text{ if } M \in C^{k}$$

35/37

Putting Everything Together.....

$$\sigma_n = O\left(d_{\lfloor n/2 \rfloor}^{1/2}\right)$$

$$d_n = O\left(h_n^{2k}\right)$$

$$h_n = O\left(n^{-\frac{1}{d}}\right)$$

Conclusion: The sequential, greedy algorithm guarantees

$$\left\| \operatorname{MSE}\left(\hat{f}_{n}\left(\cdot\right)\right) \right\|_{\infty} = \sigma_{n} \leq C_{k} n^{-\frac{k}{d}} \quad \text{for } C_{k} > 0, \text{ if } M \in C^{k}$$

- In particular, if M ∈ C[∞], Gaussian process landmarking guarantees that MSE decays faster than any inverse polynomial in n
- Open Question: Exponential convergence?

Outline

Motivation

- Geometric Morphometrics
- Experimental Design

Gaussian Process Landmarking

- Sequential Experimental Design
- Witten Laplacian
- Reduced Basis Method

Other Applications

Joint work with Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Post-Stories

- Ravier, Robert J. "Eyes on the Prize: Improved Registration via Forward Propagation." arXiv preprint arXiv:1812.10592 (2018).
- Shan, Shan, Shahar Z. Kovalsky, Julie M. Winchester, Doug M. Boyer, and Ingrid Daubechies. "ariaDNE: A robustly implemented algorithm for Dirichlet energy of the normal." *Methods in Ecology and Evolution*, 10, no. 4 (2019): 541–552.

Thank You!

• Tingran Gao, Shahar Z. Kovalsky, Ingrid Daubechies. "Gaussian Process Landmarking on Manifolds." SIAM Journal on Mathematics of Data Science, 1(1), 208–236 (2019)

• Tingran Gao, Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies. "Gaussian Process Landmarking for Three-Dimensional Geometric Morphometrics." *SIAM Journal on Mathematics of Data Science*, 1(1), 237–267 (2019)