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Morphology and Classification

Systema Naturae, 1735 Carl Linnaeus (1707-1778)
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Iris — A Classical Example of Morphometrics

R.A. Fisher ”The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics 7.2 (1936): 179-188.
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Landmark-based Geometric Morphometrics
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Geometric Morphometrics(
S1, {xj}Jj=1

)
,
(
S2, {yj}Jj=1

)
−→

d2
Procrustes (S1,S2) = min

R rigid motion

1

J

J∑
j=1

‖R (xj)− yj‖2

Boyer et al. ”Algorithms to Automatically Quantify the Geometric Similarity of Anatomical

Surfaces.” Proceedings of the National Academy of Sciences 108.45 (2011): 18221-18226.
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Shape Distances

I John Clifford Gower, John C. Gower, and Garmt B. Dijksterhuis. “Procrustes Problems.” vol. 3 of Oxford
Statistical Science Series, Oxford University Press Oxford, 2004.

I Rima Alaifari, Ingrid Daubechies, and Yaron Lipman. “Continuous Procrustes distance between two
surfaces.” Communications on Pure and Applied Mathematics 66, no. 6 (2013): 934-964.

I Doug M. Boyer, Yaron Lipman, Elizabeth St Clair, Jesus Puente, Biren A. Patel, Thomas Funkhouser,
Jukka Jernvall, and Ingrid Daubechies. “Algorithms to automatically quantify the geometric similarity of
anatomical surfaces.” Proceedings of the National Academy of Sciences 108, no. 45 (2011): 18221-18226.

I Facundo Mémoli. “Gromov–Wasserstein distances and the metric approach to object matching.”
Foundations of Computational Mathematics 11, no. 4 (2011): 417-487.

I Rongjie Lai, Hongkai Zhao. “Multi-scale Non-Rigid Point Cloud Registration Using Robust
Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap”, SIAM Journal on Imaging Sciences 10(2),
pp. 449-483, 2017.

I Patrice Koehl, Joel Hass, “Landmark-Free Geometric Methods in Biological Shape Analysis”, Journal of
The Royal Society Interface, 12 no. 113 (2015): 20150795

I ......
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Shape Distances

Boyer et al. 2011, 2012
Daubechies et al. 2011, 2013 Conformal Wasserstein Distance

Al-Aifari et al. 2013 Continuous Procrustes Distance
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Landmark-Free Approaches: Bypass Feature Extraction

S1

S2

Correspondence-Based Shape Distances

D (S1,S2) = inf
f ∈A (S1,S2)

F (f ; S1,S2)
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Revisiting Landmarks: For the Sake of Interpretability, or
Turning the Clock Back?
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Bookstein’s Typology

10/37



Bookstein’s Typology ...... Cracked?
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Experimental Design: A Classical Paradigm in Statistics

I Estimation: Given i.i.d. data {(Xi ,Yi ) , 1 ≤ i ≤ n} sampled
from a joint distribution D, find good estimators by solving

min
f̂ ∈F

E(X ,Y )∼D

[(
f̂n (X | {(Xi ,Yi )})− Y

)2
]

I Experimental Design: Given an estimation procedure f 7→ f̂n
for a class of target functions f ∼ F , find samples x1, · · · , xn
that minimize

min
x1,··· ,xn

Ef∼F

[(
f̂n (x | {(xi , f (xi ))})− f (x)

)2
]

I Gaussian Process Experimental Design: F = GP (m,K )
is a Gaussian process on domain X
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Gaussian Process Experimental Design: (Simple) Kriging

I Gaussian process GP (0,K ) defined on a domain Ω by
I kernel function K : Ω× Ω→ R
I For f ∼ GP (0,K ), its values at any n points x1, · · · , xn ∈ Ω

(f (x1) , · · · , f (xn))> ∈ Rn

follow a multivariate normal distribution

N (0,Kn)

where

Kn =

K (x1, x1) . . . K (x1, xn)
...

...
K (xn, x1) . . . K (xn, xn)

 ∈ Rn×n
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Gaussian Process Experimental Design: (Simple) Kriging

I Conditioned on values at x1, · · · , xn, i.e.

f (xi ) = yi , 1 ≤ i ≤ n,

the value f (x) at any new point x ∈ Ω follows a normal
distribution

f (x) | {f (xi ) = yi , 1 ≤ i ≤ n}

∼ N
(
rn (x)>K −1

n y,K (x , x)− rn (x)>K −1
n rn (x)

)
where

rn (x) = (K (x , x1) , · · · ,K (x , xn))> ∈ Rn

y = (y1, · · · , yn)> ∈ Rn.
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Gaussian Process Experimental Design: (Simple) Kriging

I Mean Squared Error (MSE) of the predictor

f̂n (x) = E (f (x) | {f (xi ) = yi , 1 ≤ i ≤ n})
= rn (x)>K −1

n y

is simply

MSE
(
f̂n (x)

)
= E

(
f̂n (x)− f (x)

)2

= K (x , x)− rn (x)>K −1
n rn (x)

I Kriging: How to pick x1, · · · , xn ∈ M so as to minimize
the Integrated MSE (IMSE)

IMSE
(
f̂n
)

:=

∫
Ω
MSE

(
f̂n (x)

)
dx
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Universal Convergence of (Simple) Kriging

Spectral Convergence (Wang-Tuo-Wu 2017). If K is a
Gaussian kernel, {x1, · · · , xn} ⊂ Ω a bounded open subset of a
Euclidean space, then w.h.p.

sup
x∈Ω

∣∣∣f̂n (x)− f (x)
∣∣∣ = OP

(
h

c
hn
− 1

2
n log

1
2 (1/hn)

)
where hn is the fill distance

hn := sup
x∈Ω

min
1≤i≤n

‖x − xi‖ .

Corollary. Let h∗ denote the minimum fill distance on Ω for n
points. Then

inf
{x1,··· ,xn}⊂Ω

IMSE
(
f̂n
)

= OP

(
h

c
h∗
−1

∗ log (1/h∗)

)
.

Wenjia Wang, Rui Tuo, and C. F. Wu. ”Universal Convergence of Kriging.” arXiv:1710.06959 (2017).
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Sequential Experimental Design

I Select x1, · · · , xn sequentially

I Methodology: Iteratively pick the most uncertain location

I With x1, · · · , xi−1 given, pick

xi := arg max
x∈Ω

MSE
(
f̂i−1 (x)

)

I For Gaussian process experimental design, this amounts to
iteratively picking the point maximizing

MSE
(
f̂i−1 (x)

)
= K (x , x)− ri−1 (x)>K −1

i−1ri−1 (x)

I Numerical Linear Algebra Perspective: Cholesky
Decomposition with Complete Pivoting
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Gaussian Process Landmarking

Input: d-dimensional Manifold M isometrically embedded in RD ,
where d < D, and number of landmarks N

I Construct a kernel K c : M ×M → R

K c
ε (x , y) =

∫
M
e−

1
2ε
‖x−z‖2

Dc (z) e−
1

2ε
‖z−y‖2

DdvolM (z)

where c : M → R is the (Gauss/mean/L2-) curvature of M

I For i = 1
x1 = arg max

x∈M
K c
ε (x , x)
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Gaussian Process Landmarking

I For i = 2, . . . ,N

xi = arg max
x∈M

MSE
(
f̂i−1 (x)

)
= arg max

x∈M

[
K c
ε (x , x)− rci−1 (x)>K −1

i−1r
c
i−1 (x)

]
where

rci−1 (x) = (K c
ε (x , x1) , · · · ,K c

ε (x , xi−1))> ∈ Ri−1,

Ki−1 =

 K (x1, x1) . . . K (x1, xi−1)
...

...
K (xi−1, x1) . . . K (xi−1, xi−1)

 ∈ R(i−1)×(i−1)

Output: N landmarks x1, · · · , xN ∈ M
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Efficient Adequate Coverage
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Feature Matching by Bounded Distortion Filtering

(a) (b) (c) (d) (e)
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Feature Matching by Bounded Distortion Filtering

I GP landmarks
{
ζ

(1)
1 , · · · , ζ(1)

L

}
on S1,

{
ζ

(2)
1 , · · · , ζ(2)

L

}
on S2

I For each ζ
(1)
` propose T matches ζ

(2)
`→1, · · · , ζ

(2)
`→T on S2

I Solve the minimization problem (with iterative reweighted
least squares (IRLS))

min
Ψ∈BD(K)

L∑
`=1

T∑
t=1

∥∥∥Ψ
(
ζ

(1)
`

)
− ζ(2)

`→t

∥∥∥
0

where BD (K ) is the space of quasiconformal maps between
S1 and S2 with conformal distortion bounded by K ≥ 0

• Yaron Lipman, Stav Yagev, Roi Poranne, David W. Jacobs, and Ronen Basri. “Feature Matching with Bounded
Distortion.” ACM Transactions on Graphics (TOG), 33, no. 3 (2014): 26.
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G
P-

B
D

So
ur

ce
C

PM

(a) (b) (c) (d)

0.185

0.096 0.059

0.092

0.083

0.099

0.185

0.078
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Reweighted Kernel and the Witten Laplacian

K c
ε (x , y) =

∫
M
e−

1
2ε
‖x−z‖2

Dc (z) e−
1

2ε
‖z−y‖2

DdvolM (z)

THM. (G. et al. 2019b). For f ∈ C 2 (M)

lim
ε→0

1

ε


∫
M
K c
ε (x , y) f (y) dvolM (y)∫

M
K c
ε (x , y)dvolM (y)

− f (x)


= ∆f (x) +∇f (x) · ∇ log c (x) .

I.e., the infinitesimal generator of the diffusion process defined by
transition kernel K c

ε (x , y) is conjugate to the Witten Laplacian

Lε = −∆− 1

ε
∇ log c · ∇

• Tingran Gao, Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies. “Gaussian Process Landmarking for
Three-Dimensional Geometric Morphometrics.” SIAM Journal on Mathematics of Data Science, 1(1), 237–267
(2019)
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Localization of Eigenfunctions

• Tingran Gao, Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies. “Gaussian Process Landmarking for
Three-Dimensional Geometric Morphometrics.” SIAM Journal on Mathematics of Data Science, 1(1), 237–267
(2019)
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The Importance of Reweighting

• Tingran Gao, Shahar Z. Kovalsky, Doug M. Boyer, Ingrid Daubechies. “Gaussian Process Landmarking for
Three-Dimensional Geometric Morphometrics.” SIAM Journal on Mathematics of Data Science, 1(1), 237–267
(2019)
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Sequential Experimental Design: Some Theory

I Statistically: If problem has submodularity (e.g. maximizing
det (Kn) in entropy-based sequential experimental design),
can obtain near-optimality [Ko et al. 1995, Kause et al. 2008, Bouhtou et al. 2010]

OPTn ≥ GPLn ≥ (1− ε)OPTn

I Algorithmically: This problem is NP-hard, life is short, find
polynomial time approximations [Avron and Boutsidis 2013, Nikolov 2015, Wang

et al. 2017, Allen-Zhu et al 2018]

I Machine Learning: Active Learning [Lewis and Gale 1994, Settles 2010]

I Our Contribution: Estimates for the decay rate of∥∥∥MSE
(
f̂n (·)

)∥∥∥
∞

= sup
x∈M

MSE
(
f̂n (x)

)

29/37



Faster Decay Than Any Inverse Polynomials

THM (G. et al. 2019a). Let M be a d-dimensional Riemannian
manifold isometrically embedded in RD , with d < D. Let
x1, · · · , xn be sequentially sampled on M using the Gaussian
process landmarking algorithm. If K c

ε is in C ` (M), then for any
1 ≤ k ≤ ` there exists Ck > 0 such that

sup
x∈M

MSE
(
f̂n (x)

)
≤ Ckn

− k
d

for all sufficiently large n ∈ N.

I Proof relies on the interpretation of the Gaussian process
landmarking algorithm as applying the reduced basis method
to the reproducing kernel Hilbert space associated with the
Gaussian process GP (0,K c

ε ).

• Tingran Gao, Shahar Z. Kovalsky, Ingrid Daubechies. “Gaussian Process Landmarking on Manifolds.” SIAM
Journal on Mathematics of Data Science, 1(1), 208–236 (2019)
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Reproducing Kernel Hilbert Space for Gaussian Processes

I Mercer’s Theorem: K c
ε (x , y) =

∞∑
k=0

e−λkφk (x)φk (y)

I RKHS: Closure under the RKHS norm of the set{∑
i∈I

aiK
c
ε (·, zi ) | ai ∈ R, zi ∈ M, card (I ) <∞

}

I Feature Mapping: M 3 x 7→ K c
ε (x , ·) ∈ RKHS

Key Observation: If Vn := span {K c
ε (x1, ·) , · · · ,K c

ε (xn−1, ·)},
then

MSE
(
f̂n−1 (x)

)
= distRKHS (K c

ε (x , ·) ,Vn)
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Reduced Basis Method vs. Sequential Experimental Design

RBM GP-SED

compact K ⊂H compact Md ↪→ RD

f1 := arg max
h∈K

‖h‖ x1 := arg max
x∈M

K c
ε (x , x)

f2 := arg max
h∈K

distH (h,V1) x2 := arg max
x∈M

MSE
(
f̂1 (x)

)
V1 := span {f0}

...
...

fn := arg max
h∈K

distH (h,Vn−1) xn := arg max
x∈M

MSE
(
f̂n−1 (x)

)
Vn−1 := span {f0, · · · , fn−1}

Key Observation: If Vn := span {K c
ε (x1, ·) , · · · ,K c

ε (xn−1, ·)},
then

MSE
(
f̂n−1 (x)

)
= distRKHS (K c

ε (x , ·) ,Vn)
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Greedy Algorithms in Reduced Basis Methods

dn := inf
dimY=n
Y⊂RKHS

sup
x∈M

distRKHS (K c
ε (x , ·) ,Y )

σn := sup
x∈M

distRKHS (K c
ε (x , ·) ,Vn)

I σn =
∥∥∥MSE

(
f̂n (·)

)∥∥∥
∞

I dn is the Kolmogorov width, and dn = O
(
hkn
)

if M is a C k

manifold, where hn is the fill distance with n points
(Wendland 2004)

I Results from the reduced basis method (Binev 2011, DeVore

et al. 2013) can be used to obtain σn = O
(
d

1/2
bn/2c

)
H. Wendland, Scattered Data Approximation, vol. 17, Cambridge University Press, 2004.
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Greedy Algorithms in Reduced Basis Methods

Theorem (DeVore et al. 2013). For any N ≥ 0, n ≥ 1, and
1 ≤ m < n, there holds

n∏
`=1

σ2
N+` ≤

( n

m

)m ( n

n −m

)n−m
σ2m
N+1d

2n−2m
m .

In particular, setting N = 0 and m = bn/2c,

σn ≤
√

2 ‖K c
ε ‖

1
2
∞,M×M d

1
2

bn/2c

for all n ∈ N, n ≥ 2.

• P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, “Convergence Rates for Greedy
Algorithms in Reduced Basis Methods.” SIAM Journal on Mathematical Analysis, 43 (2011), pp. 1457–1472.

• R. DeVore, G. Petrova, and P. Wojtaszczyk, Greedy Algorithms for Reduced Bases in Banach Spaces,
Constructive Approximation, 37 (2013), pp. 455–466.
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Putting Everything Together......

I σn = O
(
d

1/2
bn/2c

)
I dn = O

(
h2k
n

)
I hn = O

(
n−

1
d

)

Conclusion: The sequential, greedy algorithm guarantees∥∥∥MSE
(
f̂n (·)

)∥∥∥
∞

= σn ≤ Ckn
− k

d for Ck > 0, if M ∈ C k

I In particular, if M ∈ C∞, Gaussian process landmarking
guarantees that MSE decays faster than any inverse
polynomial in n

I Open Question: Exponential convergence?
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Post-Stories
I Ravier, Robert J. “Eyes on the Prize: Improved Registration
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Thank You!
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